
Pieter Van West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2762414/publications.pdf Version: 2024-02-01

DIETED VAN WEST

#	Article	IF	CITATIONS
1	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	13.7	1,405
2	A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 2007, 450, 115-118.	13.7	760
3	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	13.9	391
4	Resistance of Nicotiana benthamiana to Phytophthora infestans Is Mediated by the Recognition of the Elicitor Protein INF1. Plant Cell, 1998, 10, 1413-1425.	3.1	371
5	EST Mining and Functional Expression Assays Identify Extracellular Effector Proteins From the Plant Pathogen Phytophthora. Genome Research, 2003, 13, 1675-1685.	2.4	333
6	Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. The Mycologist, 2006, 20, 99-104.	0.5	277
7	Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica. PLoS Genetics, 2013, 9, e1003272.	1.5	221
8	New insights into animal pathogenic oomycetes. Trends in Microbiology, 2008, 16, 13-19.	3.5	198
9	Internuclear Gene Silencing in Phytophthora infestans. Molecular Cell, 1999, 3, 339-348.	4.5	168
10	Presence/absence, differential expression and sequence polymorphisms between <i>PiAVR2</i> and <i>PiAVR2â€like</i> in <i>Phytophthora infestans</i> determine virulence on <i>R2</i> plants. New Phytologist, 2011, 191, 763-776.	3.5	142
11	Cellulose Synthesis in <i>Phytophthora infestans</i> Is Required for Normal Appressorium Formation and Successful Infection of Potato. Plant Cell, 2008, 20, 720-738.	3.1	133
12	Advances in research on oomycete root pathogens. Physiological and Molecular Plant Pathology, 2003, 62, 99-113.	1.3	125
13	The RxLR Motif of the Host Targeting Effector AVR3a of <i>Phytophthora infestans</i> Is Cleaved before Secretion. Plant Cell, 2017, 29, 1184-1195.	3.1	123
14	The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biology Reviews, 2013, 27, 33-42.	1.9	121
15	TheipiO Gene ofPhytophthora infestansIs Highly Expressed in Invading Hyphae during Infection. Fungal Genetics and Biology, 1998, 23, 126-138.	0.9	115
16	Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150459.	1.8	114
17	A method for double-stranded RNA-mediated transient gene silencing inPhytophthora infestans. Molecular Plant Pathology, 2005, 6, 153-163.	2.0	108
18	Plasmodium falciparum and Hyaloperonospora parasitica effector translocation motifs are functional in Phytophthora infestans. Microbiology (United Kingdom), 2008, 154, 3743-3751.	0.7	94

PIETER VAN WEST

#	Article	IF	CITATIONS
19	Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors. BMC Microbiology, 2005, 5, 46.	1.3	90
20	Secretion, delivery and function of oomycete effector proteins. Current Opinion in Microbiology, 2012, 15, 685-691.	2.3	90
21	Chaxapeptin, a Lasso Peptide from Extremotolerant <i>Streptomyces leeuwenhoekii</i> Strain C58 from the Hyperarid Atacama Desert. Journal of Organic Chemistry, 2015, 80, 10252-10260.	1.7	83
22	Host-targeting protein 1 (SpHtp1) from the oomycete <i>Saprolegnia parasitica</i> translocates specifically into fish cells in a tyrosine-O-sulphate–dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2096-2101.	3.3	79
23	Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles. PLoS ONE, 2014, 9, e85853.	1.1	78
24	The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biology, 2012, 116, 24-41.	1.1	74
25	Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology (United Kingdom), 2008, 154, 1482-1490.	0.7	71
26	Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nature Communications, 2016, 7, 10470.	5.8	65
27	Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME Journal, 2014, 8, 2002-2014.	4.4	64
28	Parental Transfer of the Antimicrobial Protein LBP/BPI Protects Biomphalaria glabrata Eggs against Oomycete Infections. PLoS Pathogens, 2013, 9, e1003792.	2.1	61
29	Immune gene expression in trout cell lines infected with the fish pathogenic oomycete Saprolegnia parasitica. Developmental and Comparative Immunology, 2012, 38, 44-54.	1.0	53
30	The putative RxLR effector protein SpHtp1 from the fish pathogenic oomycete Saprolegnia parasitica is translocated into fish cells. FEMS Microbiology Letters, 2010, 310, 127-137.	0.7	51
31	Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E ₂ in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica. Infection and Immunity, 2014, 82, 4518-4529.	1.0	49
32	Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycetePhytophthora palmivora. FEMS Microbiology Letters, 1999, 178, 71-80.	0.7	45
33	Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans. Fungal Biology, 2010, 114, 702-723.	1.1	41
34	Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biology, 2014, 37, 1607-1619.	0.5	37
35	Pathogens of brown algae: culture studies of <i>Anisolpidium ectocarpii</i> and <i>A. rosenvingei</i> reveal that the Anisolpidiales are uniflagellated oomycetes. European Journal of Phycology, 2017, 52, 133-148.	0.9	34
36	A Molecular Insight into Algal-Oomycete Warfare: cDNA Analysis of Ectocarpus siliculosus Infected with the Basal Oomycete Eurychasma dicksonii. PLoS ONE, 2011, 6, e24500.	1.1	33

PIETER VAN WEST

#	Article	IF	CITATIONS
37	Arctic marine phytobenthos of northern Baffin Island. Journal of Phycology, 2016, 52, 532-549.	1.0	31
38	Infection of the brown alga <scp><i>E</i></scp> <i>ctocarpus siliculosus</i> by the oomycete <scp><i>E</i></scp> <i>urychasma dicksonii</i> induces oxidative stress and halogen metabolism. Plant, Cell and Environment, 2016, 39, 259-271.	2.8	30
39	Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal Biology, 2013, 117, 752-763.	1.1	29
40	Aphanomyces invadans, the causal agent of Epizootic Ulcerative Syndrome, is a global threat to wild and farmed fish. Fungal Biology Reviews, 2018, 32, 118-130.	1.9	29
41	Avirulence Protein 3a (AVR3a) from the Potato Pathogen Phytophthora infestans Forms Homodimers through Its Predicted Translocation Region and Does Not Specifically Bind Phospholipids. Journal of Biological Chemistry, 2012, 287, 38101-38109.	1.6	28
42	Cell entry of a host-targeting protein of oomycetes requires gp96. Nature Communications, 2018, 9, 2347.	5.8	28
43	Title is missing!. European Journal of Plant Pathology, 1998, 104, 521-525.	0.8	26
44	A putative serine protease, SpSsp1, from Saprolegnia parasitica is recognised by sera of rainbow trout, Oncorhynchus mykiss. Fungal Biology, 2014, 118, 630-639.	1.1	26
45	Isolation of fungal pathogens from eggs of the endangered sea turtle species <i>Chelonia mydas</i> in Ascension Island. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 661-667.	0.4	23
46	Galleria melonella as an experimental inÂvivo host model for the fish-pathogenic oomycete Saprolegnia parasitica. Fungal Biology, 2018, 122, 182-189.	1.1	16
47	Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans. Genomics, 2021, 113, 944-956.	1.3	16
48	A family of small tyrosine rich proteins is essential for oogonial and oospore cell wall development of the mycoparasitic oomycete Pythium oligandrum. Fungal Biology, 2013, 117, 163-172.	1.1	14
49	Development of eukaryotic zoospores within polycyclic aromatic hydrocarbon (PAH)-polluted environments: A set of behaviors that are relevant for bioremediation. Science of the Total Environment, 2015, 511, 767-776.	3.9	14
50	Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS ONE, 2018, 13, e0190361.	1.1	14
51	New records and observations of macroalgae and associated pathogens from the Falkland Islands, Patagonia and Tierra del Fuego. Botanica Marina, 2016, 59, 105-121.	0.6	13
52	Animal pathogenic Oomycetes. Fungal Biology, 2014, 118, 525-526.	1.1	12
53	Functional characterization of a tyrosinase gene from the oomycete Saprolegnia parasitica by RNAi silencing. Fungal Biology, 2014, 118, 621-629.	1.1	12
54	Biological Concepts for the Control of Aquatic Zoosporic Diseases. Trends in Parasitology, 2019, 35, 571-582.	1.5	11

PIETER VAN WEST

#	Article	IF	CITATIONS
55	Molecular insights into the mechanisms of susceptibility of Labeo rohita against oomycete Aphanomyces invadans. Scientific Reports, 2020, 10, 19531.	1.6	11
56	Marine benthic algal flora of Ascension Island, South Atlantic. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 681-688.	0.4	10
57	Reprint of: Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal Biology, 2014, 118, 579-590.	1.1	9
58	Mobilization of Pollutant-Degrading Bacteria by Eukaryotic Zoospores. Environmental Science & Technology, 2016, 50, 7633-7640.	4.6	9
59	<i>Exophiala angulospora</i> infection in hatcheryâ€reared lumpfish (<i>Cyclopterus lumpus</i>) broodstock. Journal of Fish Diseases, 2019, 42, 335-343.	0.9	9
60	Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae). Scientific Reports, 2020, 10, 8279.	1.6	9
61	The influence of depth and season on the benthic communities of a Macrocystis pyrifera forest in the Falkland Islands. Polar Biology, 2020, 43, 573-586.	0.5	9
62	Development of a 3D spheroid cell culture system from fish cell lines for in vitro infection studies: Evaluation with <i>Saprolegnia parasitica</i> . Journal of Fish Diseases, 2021, 44, 701-710.	0.9	9
63	NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associated prolyl isomerase. BMC Biology, 2016, 14, 53.	1.7	8
64	Oomycete-Root Interactions. Rhizosphere Biology, 2019, , 83-103.	0.4	7
65	Saprolegnia infection after vaccination in Atlantic salmon is associated with differential expression of stress and immune genes in the host. Fish and Shellfish Immunology, 2020, 106, 1095-1105.	1.6	7
66	Evaluation of Potential Transfer of the Pathogen Saprolegnia parasitica between Farmed Salmonids and Wild Fish. Pathogens, 2021, 10, 926.	1.2	7
67	Transformation systems, gene silencing and gene editing technologies in oomycetes. Fungal Biology Reviews, 2021, , .	1.9	6
68	Nonagonal cadherins: A new protein family found within the Stramenopiles. Gene, 2016, 593, 64-75.	1.0	5
69	The chaperone Lhs1 contributes to the virulence of the fish-pathogenic oomycete Aphanomyces invadans. Fungal Biology, 2020, 124, 1024-1031.	1.1	5
70	Pathogenicity and Host Range of Pythium kashmirense—A Soil-Borne Oomycete Recently Discovered in the UK. Journal of Fungi (Basel, Switzerland), 2021, 7, 479.	1.5	5
71	Current practices and emerging possibilities for reducing the spread of oomycete pathogens in terrestrial and aquatic production systems in the European Union. Fungal Biology Reviews, 2022, 40, 19-36.	1.9	5
72	Phylogenetic and Functional Diversity of Saprolegniales and Fungi Isolated from Temperate Lakes in Northeast Germany. Journal of Fungi (Basel, Switzerland), 2021, 7, 968.	1.5	5

#	Article	IF	CITATIONS
73	Managing scientific diving operations in a remote location: the Canadian high Arctic. Diving and Hyperbaric Medicine, 2013, 43, 239-43.	0.2	5
74	The fungal ecology of seabird nesting sites in the Falkland Islands indicates a niche for mycoparasites. Fungal Ecology, 2018, 36, 99-108.	0.7	3
75	Can Ulcerative Dermal Necrosis (UDN) in Atlantic salmon be attributed to ultraviolet radiation and secondary Saprolegnia parasitica infections?. Fungal Biology Reviews, 2022, 40, 70-75.	1.9	3