
Brian J Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761790/publications.pdf Version: 2024-02-01

RDIAN I RENNETT

#	Article	IF	CITATIONS
1	Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472, 57-63.	13.7	4,238
2	Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation. Cell Metabolism, 2013, 17, 49-60.	7.2	794
3	Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress. Circulation Research, 2008, 102, 589-596.	2.0	551
4	Comparative Analysis of Proteome and Transcriptome Variation in Mouse. PLoS Genetics, 2011, 7, e1001393.	1.5	548
5	Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metabolism, 2013, 17, 141-152.	7.2	464
6	Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation. Journal of Biological Chemistry, 2015, 290, 5647-5660.	1.6	400
7	A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Research, 2010, 20, 281-290.	2.4	299
8	Osteoprotegerin Inactivation Accelerates Advanced Atherosclerotic Lesion Progression and Calcification in Older ApoE â^'/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2117-2124.	1.1	275
9	Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. Journal of Lipid Research, 2015, 56, 22-37.	2.0	254
10	Inhibition of Bone Morphogenetic Proteins Protects Against Atherosclerosis and Vascular Calcification. Circulation Research, 2010, 107, 485-494.	2.0	224
11	Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study , , ,. American Journal of Clinical Nutrition, 2014, 100, 778-786.	2.2	195
12	Calcification of Advanced Atherosclerotic Lesions in the Innominate Arteries of ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1420-1425.	1.1	158
13	The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. Journal of Lipid Research, 2016, 57, 925-942.	2.0	143
14	Simvastatin Promotes Atherosclerotic Plaque Stability in ApoE-Deficient Mice Independently of Lipid Lowering. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1832-1837.	1.1	135
15	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	1.0	134
16	Unraveling Inflammatory Responses using Systems Genetics and Gene-Environment Interactions in Macrophages. Cell, 2012, 151, 658-670.	13.5	134
17	Microbiotaâ€Dependent Metabolite Trimethylamine Nâ€Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). Journal of the American Heart Association, 2016, 5, .	1.6	132
18	High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine <i>N</i> -oxide. Science, 2021, 373, 813-818.	6.0	132

BRIAN J BENNETT

#	Article	IF	CITATIONS
19	Expanding role of gut microbiota in lipid metabolism. Current Opinion in Lipidology, 2016, 27, 141-147.	1.2	128
20	Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genetics, 2015, 11, e1005711.	1.5	124
21	Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine <i>N</i> -Oxide, a Proatherogenic Metabolite of Choline and <scp>l</scp> -Carnitine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1307-1313.	1.1	119
22	Mouse Genome-Wide Association and Systems Genetics Identify Asxl2 As a Regulator of Bone Mineral Density and Osteoclastogenesis. PLoS Genetics, 2011, 7, e1002038.	1.5	108
23	Myeloid <i>Slc2a1</i> -Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. Journal of Immunology, 2019, 202, 1265-1286.	0.4	104
24	Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment. Circulation: Cardiovascular Genetics, 2016, 9, 291-313.	5.1	99
25	Epigenome-Wide Association of Liver Methylation Patterns and Complex Metabolic Traits in Mice. Cell Metabolism, 2015, 21, 905-917.	7.2	98
26	Granulocyte Macrophage Colony-Stimulating Factor Regulates Dendritic Cell Content of Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 621-627.	1.1	80
27	Gene networks associated with conditional fear in mice identified using a systems genetics approach. BMC Systems Biology, 2011, 5, 43.	3.0	71
28	Adropin: An endocrine link between the biological clock and cholesterol homeostasis. Molecular Metabolism, 2018, 8, 51-64.	3.0	69
29	Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mammalian Genome, 2014, 25, 583-599.	1.0	66
30	Does Exercise Alter Gut Microbial Composition? A Systematic Review. Medicine and Science in Sports and Exercise, 2019, 51, 160-167.	0.2	64
31	Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 632335.	1.5	63
32	Chronic inhibition of cyclooxygenase-2 does not alter plaque composition in a mouse model of advanced unstable atherosclerosis. Cardiovascular Research, 2003, 60, 198-204.	1.8	61
33	Genetic regulation of mouse liver metabolite levels. Molecular Systems Biology, 2014, 10, 730.	3.2	55
34	Zbtb16 has a role in brown adipocyte bioenergetics. Nutrition and Diabetes, 2012, 2, e46-e46.	1.5	54
35	Systems Genetic Analysis of Osteoblast-Lineage Cells. PLoS Genetics, 2012, 8, e1003150.	1.5	48
36	High-Resolution Genetic Mapping in the Diversity Outbred Mouse Population Identifies <i>Apobec1</i> as a Candidate Gene for Atherosclerosis, G3: Genes, Genomes, Genetics, 2014, 4, 2353-2363	0.8	46

Brian J Bennett

#	Article	IF	CITATIONS
37	Improving Metabolic Health Through Precision Dietetics in Mice. Genetics, 2018, 208, 399-417.	1.2	44
38	The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities. Current Atherosclerosis Reports, 2017, 19, 6.	2.0	38
39	Nutrition and the science of disease prevention: a systems approach to support metabolic health. Annals of the New York Academy of Sciences, 2015, 1352, 1-12.	1.8	37
40	Progression and Disruption of Advanced Atherosclerotic Plaques in Murine Models. Current Drug Targets, 2008, 9, 210-216.	1.0	35
41	Genome-wide association mapping of blood cell traits in mice. Mammalian Genome, 2013, 24, 105-118.	1.0	34
42	Choline metabolites. Current Opinion in Lipidology, 2016, 27, 33-39.	1.2	29
43	Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk. Current Diabetes Reports, 2016, 16, 93.	1.7	28
44	Sequence meets function—microbiota and cardiovascular disease. Cardiovascular Research, 2022, 118, 399-412.	1.8	24
45	Maximal information component analysis: a novel non-linear network analysis method. Frontiers in Genetics, 2013, 4, 28.	1.1	22
46	The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice. Stem Cell Reports, 2015, 5, 125-138.	2.3	21
47	microRNA-146a-5p association with the cardiometabolic disease risk factor TMAO. Physiological Genomics, 2019, 51, 59-71.	1.0	20
48	Identification of Aortic Arch-Specific Quantitative Trait Loci for Atherosclerosis by an Intercross of DBA/2J and 129S6 Apolipoprotein E-Deficient Mice. PLoS ONE, 2015, 10, e0117478.	1.1	19
49	Neither antioxidants nor genistein inhibit the progression of established atherosclerotic lesions in older apoE deficient mice. Atherosclerosis, 2009, 203, 82-88.	0.4	18
50	Genetic Regulation of Atherosclerotic Plaque Size and Morphology in the Innominate Artery of Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 348-355.	1.1	16
51	Quantitative Trait Loci Affecting Atherosclerosis at the Aortic Root Identified in an Intercross between DBA2J and 129S6 Apolipoprotein E-Null Mice. PLoS ONE, 2014, 9, e88274.	1.1	15
52	Lack of myeloid Fatp1 increases atherosclerotic lesion size in Ldlr â^'/â^' mice. Atherosclerosis, 2017, 266, 182-189.	0.4	14
53	Microbial modulation of host body composition and plasma metabolic profile. Scientific Reports, 2020, 10, 6545.	1.6	14
54	Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia. Physiological Genomics, 2017, 49, 618-629.	1.0	13

BRIAN J BENNETT

#	Article	IF	CITATIONS
55	High-Resolution Association Mapping of Atherosclerosis Loci in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1790-1798.	1.1	12
56	Diesel exhaust particles dysregulate multiple immunological pathways in murine macrophages: Lessons from microarray and scRNA-seq technologies. Archives of Biochemistry and Biophysics, 2019, 678, 108116.	1.4	10
57	Ectopic expression of the Stabilin2 gene triggered by an intracisternal A particle (IAP) element in DBA/2J strain of mice. Mammalian Genome, 2020, 31, 2-16.	1.0	10
58	Genetic Background Shapes Phenotypic Response to Diet for Adiposity in the Collaborative Cross. Frontiers in Genetics, 2020, 11, 615012.	1.1	10
59	Diet, Fecal Microbiome, and Trimethylamine N-Oxide in a Cohort of Metabolically Healthy United States Adults. Nutrients, 2022, 14, 1376.	1.7	10
60	Dissecting the Genetic Architecture of Cystatin C in Diversity Outbred Mice. G3: Genes, Genomes, Genetics, 2020, 10, 2529-2541.	0.8	9
61	A Small Amount of Dietary Carbohydrate Can Promote the HFD-Induced Insulin Resistance to a Maximal Level. PLoS ONE, 2014, 9, e100875.	1.1	8
62	Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery. BMC Medical Genomics, 2014, 7, 51.	0.7	8
63	Effects of a diet based on the Dietary Guidelines on vascular health and TMAO in women with cardiometabolic risk factors. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 210-219.	1.1	8
64	Plasma Choline Concentration Was Not Increased After a 6-Month Egg Intervention in 6–9-Month-Old Malawian Children: Results from a Randomized Controlled Trial. Current Developments in Nutrition, 2022, 6, nzab150.	0.1	8
65	Genetic Architecture Modulates Diet-Induced Hepatic mRNA and miRNA Expression Profiles in Diversity Outbred Mice. Genetics, 2020, 216, 241-259.	1.2	6
66	Adopting a Mediterranean-style eating pattern with low, but not moderate, unprocessed, lean red meat intake reduces fasting serum trimethylamine N-oxide (TMAO) in adults who are overweight or obese. British Journal of Nutrition, 2022, 128, 1738-1746.	1.2	6
67	Hepatic transcriptional profile reveals the role of diet and genetic backgrounds on metabolic traits in female progenitor strains of the Collaborative Cross. Physiological Genomics, 2021, 53, 173-192.	1.0	4
68	Genetic architecture modulates diet-induced hepatic mRNA and miRNA expression profiles in Diversity Outbred mice. Genetics, 2021, 218, .	1.2	4
69	Network-centered view of coronary artery disease. Expert Review of Cardiovascular Therapy, 2007, 5, 1095-1103.	0.6	3
70	Trimethylamine-N-Oxide (TMAO) Is Not Associated with Average Daily Intake of Red Meat or TMAO-Precursor Foods in a Generally Healthy Population. Current Developments in Nutrition, 2020, 4, nzaa040_037.	0.1	1
71	Obesogenic and diabetic effects of CD44 in mice are sexually dimorphic and dependent on genetic background. Biology of Sex Differences, 2022, 13, 14.	1.8	1
72	Abstract P025: Trimethylamine N-oxide Not Associated with Coronary Artery Calcium in Healthy, Young Adults with Normal Kidney Function: Coronary Artery Risk Development in Young Adults Study, 2000-2011. Circulation, 2016, 133, .	1.6	1

Brian J Bennett

#	Article	IF	CITATIONS
73	A Mediterranean-style Eating Pattern Lower in Lean Red Meat Reduced Plasma Trimethylamine N-Oxide in Adults Classified as Overweight or Obese (P08-030-19). Current Developments in Nutrition, 2019, 3, nzz044.P08-030-19.	0.1	0
74	A Randomized Controlled-feeding Trial Based on the Dietary Guidelines for Americans Does Not Affect Plasma Trimethylamine N-oxide Levels in Women (P08-031-19). Current Developments in Nutrition, 2019, 3, nzz044.P08-031-19.	0.1	0
75	Genetic Background Heavily Impacts Effects of Diet on Obesity in a Collaborative Cross Population. Current Developments in Nutrition, 2020, 4, nzaa058_040.	0.1	0
76	Sexual Dimorphism of Atherosclerosis by Gut Microbiome in a Hyperlipidemic Diversity Outbred F1 Mouse Population. Current Developments in Nutrition, 2020, 4, nzaa062_026.	0.1	0
77	The Association of Plasma Choline With Growth and Development Among Young Malawian Children Enrolled in an Egg Intervention Trial. Current Developments in Nutrition, 2021, 5, 627.	0.1	0
78	Assessment of FMO3 SNPs in Relation to TMAO in Generally Healthy United States Adults. Current Developments in Nutrition, 2021, 5, 940.	0.1	0
79	Abstract 5519: High Resolution Genetic Mapping Strategies for Metabolic Disease in Mice: Towards Association Based Studies. Circulation, 2008, 118, .	1.6	0
80	Inhibition of bone morphogenetic protein protects against atherosclerosis and vascular calcification. FASEB Journal, 2010, 24, 116.1.	0.2	0
81	Mapping metabolic traits in the diversity outbred mouse population (818.12). FASEB Journal, 2014, 28, 818.12.	0.2	0
82	Towards nutrigenomics: studies to identify geneâ€diet interactions affecting susceptibility to cardiovascular disease (373.4). FASEB Journal, 2014, 28, 373.4.	0.2	0
83	Abstract 311: Network Analysis of Pathways Associated with Genetic Regulation of Trimethylamine-N-Oxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
84	Abstract 175: Lack of Macrophage GLUT1-Mediated Glucose Metabolism Increases Atherosclerotic Lesion Instability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
85	Abstract 608: A locus on Chromosome 6 in Diversity Outbred Mice Suggests Osteogenic Regulation of Dystrophic Cardiac Calcinosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
86	Abstract 384: Integration of Aorta Network Models from Mouse Ath-HMDP with Human GWAS Reveals Novel Mechanisms of Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
87	Abstract 643: Atherosclerosis Susceptibility in the Collaborative Cross. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	0
88	Abstract 164: Identification of Genetic Regulators of the Atherosclerosis-Associated Metabolite Trimethylamine-N-Oxide in the Diversity Outbred Mice Population. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
89	Abstract 485: CD44 Deficiency Protects Against Diet-Induced Obesity and Reduces Adipose Tissue Inflammation in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0