John J Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761717/publications.pdf

Version: 2024-02-01

53 papers	3,106 citations	172386 29 h-index	53 g-index
55	55	55	4279
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	From inputs to outputs: an analysis of the changes to learning outcomes for dental undergraduate education in the UK. British Dental Journal, 2022, 232, 101-107.	0.3	2
2	Empirical Implementation of the Steinmetz Equation to Compute Eddy Current Loss in Soft Magnetic Composite Components. IEEE Access, 2022, 10, 14610-14623.	2.6	12
3	Ability of matrix metalloproteinaseâ€8 biosensor, IFMA, and ELISA immunoassays to differentiate between periodontal health, gingivitis, and periodontitis. Journal of Periodontal Research, 2022, 57, 558-567.	1.4	13
4	Discovery, validation, and diagnostic ability of multiple proteinâ€based biomarkers in saliva and gingival crevicular fluid to distinguish between health and periodontal diseases. Journal of Clinical Periodontology, 2022, 49, 622-632.	2.3	21
5	Impact of diabetes and periodontal status on life quality. BDJ Open, 2021, 7, 9.	0.8	3
6	Levels of myeloidâ€related proteins in saliva for screening and monitoring of periodontal disease. Journal of Clinical Periodontology, 2021, 48, 1430-1440.	2.3	13
7	Treatment of periodontitis reduces systemic inflammation in type 2 diabetes. Journal of Clinical Periodontology, 2020, 47, 737-746.	2.3	49
8	A Prototype Antibody-based Biosensor for Measurement of Salivary MMP-8 in Periodontitis using Surface Acoustic Wave Technology. Scientific Reports, 2019, 9, 11034.	1.6	18
9	Ageâ€related changes in immune function (immune senescence) in caries and periodontal diseases: a systematic review. Journal of Clinical Periodontology, 2017, 44, S153-S177.	2.3	48
10	Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts. PLoS ONE, 2016, 11, e0148024.	1.1	19
11	Salivary cytokines as biomarkers of periodontal diseases. Periodontology 2000, 2016, 70, 164-183.	6.3	113
12	Gingival crevicular fluid and saliva. Periodontology 2000, 2016, 70, 7-10.	6.3	60
13	DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1124-L1137.	1.3	128
14	Clinical associations between IL-17 family cytokines and periodontitis and potential differential roles for IL-17A and IL-17E in periodontal immunity. Inflammation Research, 2014, 63, 1001-1012.	1.6	61
15	Protein Biomarkers of Periodontitis in Saliva. ISRN Inflammation, 2014, 2014, 1-18.	4.9	51
16	Leptin enhances the secretion of interleukin (IL)-18, but not IL- $1\hat{l}^2$, from human monocytes via activation of caspase-1. Cytokine, 2014, 65, 222-230.	1.4	38
17	A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. Journal of Periodontology, 2013, 84, S113-34.	1.7	118
18	Leptin up-regulates TLR2 in human monocytes. Journal of Leukocyte Biology, 2013, 93, 561-571.	1.5	41

#	Article	IF	CITATIONS
19	A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. Journal of Clinical Periodontology, 2013, 40, S113-34.	2.3	319
20	Validation and quality control of ELISAs for the use with human saliva samples. Journal of Immunological Methods, 2012, 377, 62-65.	0.6	43
21	Periodontal Pathogenesis. , 2012, , 194-216.		5
22	How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis?. Journal of Clinical Periodontology, 2011, 38, 60-84.	2.3	301
23	Do patients with aggressive periodontitis have evidence of diabetes? A pilot study. Journal of Periodontal Research, 2011, 46, 663-672.	1.4	10
24	Cytokine regulation of immune responses to Porphyromonas gingivalis. Periodontology 2000, 2010, 54, 160-194.	6.3	51
25	Expression and regulation of interleukinâ€33 in human monocytes. Immunology, 2010, 130, 172-180.	2.0	116
26	Differential expression of immunoregulatory genes in monocytes in response to <i>Porphyromonas gingivalis</i> and <i>Escherichia coli</i> lipopolysaccharide. Clinical and Experimental Immunology, 2009, 156, 479-487.	1.1	98
27	Progression of periodontal disease and interleukin-10 gene polymorphism. Journal of Periodontal Research, 2008, 43, 328-333.	1.4	46
28	Pivotal Advance: Vasoactive intestinal peptide inhibits up-regulation of human monocyte TLR2 and TLR4 by LPS and differentiation of monocytes to macrophages. Journal of Leukocyte Biology, 2007, 81, 893-903.	1.5	56
29	VIP Inhibits <i>P. gingivalis</i> LPS-induced IL-18 and IL-18BPa in Monocytes. Journal of Dental Research, 2007, 86, 883-887.	2.5	23
30	Cytotoxic T-Lymphocyte–Associated Antigen-4 Single Nucleotide Polymorphisms and Haplotypes in Primary Biliary Cirrhosis. Clinical Gastroenterology and Hepatology, 2007, 5, 755-760.	2.4	35
31	The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clinical and Experimental Immunology, 2007, 149, 217-225.	1.1	324
32	Crossâ€susceptibility between periodontal disease and type 2 diabetes mellitus: an immunobiological perspective. Periodontology 2000, 2007, 45, 138-157.	6.3	83
33	Periodontitis: A complication of type 2 diabetes in Sri Lankans. Diabetes Research and Clinical Practice, 2006, 74, 209-210.	1.1	7
34	The effect of cyclosporin on cell division and apoptosis in human oral keratinocytes. Journal of Periodontal Research, 2006, 41, 297-302.	1.4	11
35	A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-α null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiological Genomics, 2006, 27, 178-186.	1.0	153
36	A human oral keratinocyte cell line responds to human heat shock protein 60 through activation of ERK1/2 MAP kinases and up- regulation of IL-1beta. Clinical and Experimental Immunology, 2005, 141, 307-314.	1.1	13

#	Article	IF	CITATIONS
37	VIP Inhibits <i>Porphyromonas gingivalis </i> LPS-induced Immune Responses in Human Monocytes. Journal of Dental Research, 2005, 84, 999-1004.	2.5	33
38	Plasma TGF-beta1 as a risk factor for gingival overgrowth. Journal of Clinical Periodontology, 2004, 31, 863-868.	2.3	15
39	Prevalence of gingival overgrowth in transplant patients immunosuppressed with tacrolimus. Journal of Clinical Periodontology, 2004, 31, 126-131.	2.3	69
40	Shouts and whispers: an introduction to immunoregulation in periodontal disease. Periodontology 2000, 2004, 35, 9-13.	6.3	38
41	Cytokine gene polymorphism and immunoregulation in periodontal disease. Periodontology 2000, 2004, 35, 158-182.	6.3	66
42	Molecular mediators of Porphyromonas gingivalis -induced T-cell apoptosis. Oral Microbiology and Immunology, 2002, 17, 224-230.	2.8	20
43	Association of interleukin-1 gene polymorphisms with early-onset periodontitis. Journal of Clinical Periodontology, 2000, 27, 682-689.	2.3	136
44	Dinucleotide repeat polymorphism in the interleukin-10 gene promoter (IL-10.G) and genetic susceptibility to early-onset periodontal disease. Genes and Immunity, 2000, 1, 402-404.	2.2	17
45	Apoptosis in Porphyromonas gingivalis -specific T-cell lines. Oral Microbiology and Immunology, 1999, 14, 331-338.	2.8	11
46	In vitro studies of lymphocyte apoptosis induced by the periodontal pathogen Porphyromonas gingivalis. Journal of Periodontal Research, 1999, 34, 70-78.	1.4	37
47	Association of a Vitamin D Receptor Gene Polymorphism With Localized Early-Onset Periodontal Diseases. Journal of Periodontology, 1999, 70, 1032-1038.	1.7	102
48	Longitudinal changes in TCRB variable gene expression and markers of gingival inflammation in experimental gingivitis. Journal of Clinical Periodontology, 1998, 25, 774-780.	2.3	10
49	Expression of Tâ€cell receptor Vβ2, 6 and 8 gene families in chronic adult periodontal disease. European Journal of Oral Sciences, 1997, 105, 397-404.	0.7	8
50	CONTROL GENES FOR REVERSE TRANSCRIPTASE/POLYMERASE CHAIN REACTION (RTâ€PCR). British Journal of Haematology, 1994, 86, 444-445.	1.2	21
51	An interstitial deletion in the rearranged T-cell receptor \hat{I}^3 chain locus in a case of T-cell acute lymphoblastic leukaemia. British Journal of Haematology, 1993, 85, 193-196.	1.2	4
52	Burkitt lymphoma cell lines are prone to recombination in the switch region of the $\lg^2\frac{1}{4}$ heavy chain locus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 109-113.	2.4	5
53	The molecular genetic analysis of gene rearrangements in acute lymphoblastic leukaemia. Best Practice and Research: Clinical Haematology, 1991, 4, 695-713.	1.1	9