
Anthony A James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/276160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution <i>in situ</i> analysis of Cas9 germline transcript distributions in gene-drive <i>Anopheles</i> mosquitoes. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	14
2	Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes. Insect Biochemistry and Molecular Biology, 2022, 142, 103720.	1.2	15
3	Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826727.	2.0	9
4	Cas9-mediated maternal effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, <i>Anopheles gambiae</i> . Genetics, 2022, , .	1.2	8
5	Interspecific mating bias may drive <i>Aedes albopictus</i> displacement of <i>Aedes aegypti</i> during its range expansion. , 2022, 1, .		7
6	The AalNix3&4 isoform is required and sufficient to convert Aedes albopictus females into males. PLoS Genetics, 2022, 18, e1010280.	1.5	4
7	Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biology, 2021, 19, 28.	1.7	77
8	Site-Directed φC31 -Mediated Integration and Cassette Exchange in Anopheles Vectors of Malaria. Journal of Visualized Experiments, 2021, , .	0.2	1
9	Small-Cage Laboratory Trials of Genetically-Engineered Anopheline Mosquitoes. Journal of Visualized Experiments, 2021, , .	0.2	0
10	Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles. BioEssays, 2021, 43, 2000282.	1.2	9
11	Digital-Droplet PCR to Detect Indels Mutations in Genetically Modified Anopheline Mosquito Populations. Journal of Visualized Experiments, 2021, , .	0.2	1
12	Oxitec and MosquitoMate in the United States: lessons for the future of gene drive mosquito control. Pathogens and Global Health, 2021, 115, 365-376.	1.0	16
13	Microinjection Method for Anopheles gambiae Embryos. Journal of Visualized Experiments, 2021, , .	0.2	2
14	Mutation of the seminal protease gene, serine protease 2, results in male sterility in diverse lepidopterans. Insect Biochemistry and Molecular Biology, 2020, 116, 103243.	1.2	28
15	The Lethal(2)-Essential-for-Life [L(2)EFL] Gene Family Modulates Dengue Virus Infection in Aedes aegypti. International Journal of Molecular Sciences, 2020, 21, 7520.	1.8	9
16	Next-generation gene drive for population modification of the malaria vector mosquito, <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22805-22814.	3.3	157
17	Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nature Communications, 2020, 11, 5553.	5.8	110
18	Cas9-Mediated Gene-Editing in the Malaria Mosquito <i>Anopheles stephensi</i> by ReMOT Control. G3: Genes, Genomes, Genetics, 2020, 10, 1353-1360.	0.8	52

#	Article	IF	CITATIONS
19	Digital droplet PCR and IDAA for the detection of CRISPR indel edits in the malaria species <i>Anopheles stephensi</i> . BioTechniques, 2020, 68, 172-179.	0.8	8
20	Application of the Relationship-Based Model to Engagement for Field Trials of Genetically Engineered Malaria Vectors. American Journal of Tropical Medicine and Hygiene, 2020, , .	0.6	13
21	Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genetics, 2019, 15, e1008440.	1.5	101
22	Fall webworm genomes yield insights into rapid adaptation of invasive species. Nature Ecology and Evolution, 2019, 3, 105-115.	3.4	82
23	The redox-sensing gene Nrf2 affects intestinal homeostasis, insecticide resistance, and Zika virus susceptibility in the mosquito Aedes aegypti. Journal of Biological Chemistry, 2018, 293, 9053-9063.	1.6	38
24	Selection and Utility of Single Nucleotide Polymorphism Markers to Reveal Fine-Scale Population Structure in Human Malaria Parasite Plasmodium falciparum. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	5
25	Silkworm genetic sexing through W chromosome-linked, targeted gene integration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8752-8756.	3.3	40
26	Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genetics, 2018, 14, e1007245.	1.5	24
27	Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus. Journal of Virology, 2017, 91, .	1.5	57
28	nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi. Insect Biochemistry and Molecular Biology, 2017, 87, 81-89.	1.2	11
29	Rules of the road for insect gene drive research and testing. Nature Biotechnology, 2017, 35, 716-718.	9.4	74
30	Sexually dimorphic traits in the silkworm, Bombyx mori, are regulated by doublesex. Insect Biochemistry and Molecular Biology, 2017, 80, 42-51.	1.2	62
31	Population modification of Anopheline species to control malaria transmission. Pathogens and Global Health, 2017, 111, 424-435.	1.0	68
32	Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination. PLoS Genetics, 2017, 13, e1006576.	1.5	85
33	Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi. PLoS ONE, 2017, 12, e0176533.	1.1	4
34	Impact of Genetic Modification of Vector Populations on the Malaria Eradication Agenda. , 2016, , 423-444.		2
35	rAed a 4: A New 67-kDa <i>Aedes aegypti</i> Mosquito Salivary Allergen for the Diagnosis of Mosquito Allergy. International Archives of Allergy and Immunology, 2016, 170, 206-210.	0.9	14
36	Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. Parasites and Vectors, 2016, 9, 363.	1.0	33

#	Article	IF	CITATIONS
37	Endogenously-expressed NH2-terminus of circumsporozoite protein interferes with sporozoite invasion of mosquito salivary glands. Malaria Journal, 2016, 15, 153.	0.8	9
38	CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella). Insect Biochemistry and Molecular Biology, 2016, 75, 98-106.	1.2	111
39	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
40	Protein phosphorylation during Plasmodium berghei gametogenesis. Experimental Parasitology, 2015, 156, 49-60.	0.5	6
41	Molecular epidemiology of Plasmodium vivax and Plasmodium falciparum malaria among Duffy-positive and Duffy-negative populations in Ethiopia. Malaria Journal, 2015, 14, 84.	0.8	51
42	Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus</i> , reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15.	3.3	251
43	Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito <i>Anopheles stephensi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6736-43.	3.3	841
44	Maternal Germline-Specific Genes in the Asian Malaria Mosquito <i>Anopheles stephensi</i> : Characterization and Application for Disease Control. G3: Genes, Genomes, Genetics, 2015, 5, 157-166.	0.8	14
45	Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biology, 2014, 15, 459.	3.8	119
46	Fitness Impact and Stability of a Transgene Conferring Resistance to Dengue-2 Virus following Introgression into a Genetically Diverse Aedes aegypti Strain. PLoS Neglected Tropical Diseases, 2014, 8, e2833.	1.3	70
47	A Regulatory Structure for Working with Genetically Modified Mosquitoes: Lessons from Mexico. PLoS Neglected Tropical Diseases, 2014, 8, e2623.	1.3	33
48	Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis. PLoS Neglected Tropical Diseases, 2014, 8, e3005.	1.3	9
49	Criteria for Identifying and Evaluating Candidate Sites for Open-Field Trials of Genetically Engineered Mosquitoes. Vector-Borne and Zoonotic Diseases, 2014, 14, 291-299.	0.6	32
50	Site-specific, TALENs-mediated transformation of Bombyx mori. Insect Biochemistry and Molecular Biology, 2014, 55, 26-30.	1.2	25
51	Integrated proteomic and transcriptomic analysis of the Aedes aegyptieggshell. BMC Developmental Biology, 2014, 14, 15.	2.1	61
52	Collagen-binding protein, Aegyptin, regulates probing time and blood feeding success in the dengue vector mosquito, <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6946-6951.	3.3	49
53	Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi. Malaria Journal, 2013, 12, 142.	0.8	49
54	The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends in Parasitology, 2013, 29, 460-468.	1.5	478

#	Article	IF	CITATIONS
55	Expression and accumulation of the two-domain odorant-binding protein AaegOBP45 in the ovaries of blood-fed Aedes aegypti. Parasites and Vectors, 2013, 6, 364.	1.0	37
56	Exogenous <i>gypsy</i> insulator sequences modulate transgene expression in the malaria vector mosquito, <i>Anopheles stephensi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7176-7181.	3.3	22
57	Probing functional polymorphisms in the dengue vector, Aedes aegypti. BMC Genomics, 2013, 14, 739.	1.2	12
58	Field Cage Studies and Progressive Evaluation of Genetically-Engineered Mosquitoes. PLoS Neglected Tropical Diseases, 2013, 7, e2001.	1.3	68
59	Molecular and Functional Characterization of Odorant-Binding Protein Genes in an Invasive Vector Mosquito, Aedes albopictus. PLoS ONE, 2013, 8, e68836.	1.1	42
60	Strain Variation in the Transcriptome of the Dengue Fever Vector, <i>Aedes aegypti</i> . G3: Genes, Genomes, Genetics, 2012, 2, 103-114.	0.8	36
61	Transgenic <i>Anopheles stephensi</i> coexpressing single-chain antibodies resist <i>Plasmodium falciparum</i> development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1922-30.	3.3	119
62	Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection. PLoS ONE, 2012, 7, e50512.	1.1	138
63	Mosquito Trials. Science, 2011, 334, 771-772.	6.0	25
64	RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti. BMC Genomics, 2011, 12, 82.	1.2	133
65	Genetic elimination of dengue vector mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4772-4775.	3.3	212
66	Engineered Resistance to Plasmodium falciparum Development in Transgenic Anopheles stephensi. PLoS Pathogens, 2011, 7, e1002017.	2.1	114
67	Proteomics reveals novel components of the Anopheles gambiae eggshell. Journal of Insect Physiology, 2010, 56, 1414-1419.	0.9	54
68	Reframing Critical Needs in Vector Biology and Management of Vector-Borne Disease. PLoS Neglected Tropical Diseases, 2010, 4, e566.	1.3	25
69	Female-specific flightless phenotype for mosquito control. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4550-4554.	3.3	291
70	Vector-Borne Diseases in the 21st Century: Counting Up or Counting Down?. , 2010, , 27-35.		0
71	From Tucson to Genomics and Transgenics: The Vector Biology Network and the Emergence of Modern Vector Biology. PLoS Neglected Tropical Diseases, 2009, 3, e343.	1.3	27
72	Genetic engineering of malaria parasite resistance in vector mosquitoes. Entomological Research, 2008, 38, 24-33.	0.6	2

#	Article	IF	CITATIONS
73	Gene Expression Studies in Mosquitoes. Advances in Genetics, 2008, 64, 19-50.	0.8	45
74	nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9970-9975.	3.3	62
75	Injection of An. stephensi Embryos to Generate Malaria-resistant Mosquitoes. Journal of Visualized Experiments, 2007, , 216.	0.2	8
76	Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes. Journal of Visualized Experiments, 2007, , 231.	0.2	8
77	GENETIC CONTROL OF MALARIA PARASITE TRANSMISSION: THRESHOLD LEVELS FOR INFECTION IN AN AVIAN MODEL SYSTEM. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1072-1078.	0.6	37
78	THE ANOPHELES GAMBIAE VITELLOGENIN GENE (VGT2) PROMOTER DIRECTS PERSISTENT ACCUMULATION OF A REPORTER GENE PRODUCT IN TRANSGENIC ANOPHELES STEPHENSI FOLLOWING MULTIPLE BLOODMEALS. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1118-1124.	0.6	31
79	Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1072-8.	0.6	20
80	The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1118-24.	0.6	19
81	Structure and expression of the lipophorin-encoding gene of the malaria vector, Anopheles gambiae. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 144, 101-109.	0.7	21
82	Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi. Insect Biochemistry and Molecular Biology, 2006, 36, 694-700.	1.2	42
83	Bridging the gaps in vector biology. EMBO Reports, 2006, 7, 259-262.	2.0	11
84	Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4198-4203.	3.3	357
85	OnlineEarly Announcement. Insect Molecular Biology, 2005, 14, 1-1.	1.0	0
86	Suitable material for publication in Insect Molecular Biology. Insect Molecular Biology, 2005, 14, 111-111.	1.0	0
87	Changes to Insect Molecular Biology Editorial Board. Insect Molecular Biology, 2005, 14, 573-573.	1.0	0
88	Gene drive systems in mosquitoes: rules of the road. Trends in Parasitology, 2005, 21, 64-67.	1.5	175
89	Nanos (nos) genes of the vector mosquitoes, Anopheles gambiae, Anopheles stephensi and Aedes aegypti. Insect Biochemistry and Molecular Biology, 2005, 35, 789-798.	1.2	45
90	Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochemistry and Molecular Biology, 2004, 34, 607-613.	1.2	65

6

#	Article	IF	CITATIONS
91	Engineering Plasmodium-refractory phenotypes in mosquitoes. Trends in Parasitology, 2003, 19, 384-387.	1.5	37
92	Gene vector and transposable element behavior in mosquitoes. Journal of Experimental Biology, 2003, 206, 3823-3834.	0.8	79
93	Blocking malaria parasite invasion of mosquito salivary glands. Journal of Experimental Biology, 2003, 206, 3817-3821.	0.8	50
94	Development of novel, genetics-based control methods for blocking transmission of mosquito-borne pathogens. Medical Entomology and Zoology, 2003, 54, 18.	0.0	0
95	Malaria Control with Genetically Manipulated Insect Vectors. Science, 2002, 298, 119-121.	6.0	221
96	Germline Transformants Spreading Out to Many Insect Species. Advances in Genetics, 2002, 47, 49-88e.	0.8	26
97	Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Molecular and Biochemical Parasitology, 2002, 121, 1-10.	0.5	48
98	Present and Future Control of Malaria. Science, 2001, 291, 435c-436.	6.0	11
99	Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2000, 30, 1003-1008.	1.2	30
100	Genetics of Mosquito Vector Competence. Microbiology and Molecular Biology Reviews, 2000, 64, 115-137.	2.9	308
101	Oxidation of 3-hydroxykynurenine to produce xanthommatin for eye pigmentation: a major branch pathway of tryptophan catabolism during pupal development in the Yellow Fever Mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 1999, 29, 329-338.	1.2	39
102	Promoter-directed expression of recombinant fire-fly luciferase in the salivary glands of Hermes-transformed Aedes aegypti. Gene, 1999, 226, 317-325.	1.0	79
103	Isolation and Characterization of the Gene Encoding a Novel Factor Xa-directed Anticoagulant from the Yellow Fever Mosquito,Aedes aegypti. Journal of Biological Chemistry, 1998, 273, 20802-20809.	1.6	131
104	Differential Gene Expression in Insects: Transcriptional Control. Annual Review of Entomology, 1998, 43, 671-700.	5.7	45
105	Characterization of a salivary gland-specific esterase in the vector mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 1995, 25, 621-630.	1.2	51
106	Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti. Molecular and Biochemical Parasitology, 1991, 44, 245-253.	0.5	131
107	An α-glucosidase in the salivary glands of the vector mosquito, Aedes aegypti. Insect Biochemistry, 1990, 20, 619-623.	1.8	60
108	Diet and salivation in female Aedes aegypti mosquitoes. Journal of Insect Physiology, 1990, 36, 545-548.	0.9	87

#	Article	IF	CITATIONS
109	Protein synthesis induced by heat in an Ixodes tick. Insect Biochemistry, 1989, 19, 731-736.	1.8	3
110	A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene, 1989, 75, 73-83.	1.0	130
111	Genetic approaches in Aedes aegypti for control of dengue:. , 0, , 77-87.		0
112	Evaluation of drive mechanisms (including transgenes and drivers) in different environmental conditions and genetic backgrounds. , 0, , 149-155.		5
113	The Transcriptome of Human Malaria Vectors. , 0, , 516-530.		0
114	What are relevant assays for refractoriness?. , 0, , 165-170.		0