Lorenz R Rhomberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological Parameter Values for Physiologically Based Pharmacokinetic Models. Toxicology and Industrial Health, 1997, 13, 407-484.	0.6	1,206
2	Toxicology and human health assessment of decabromodiphenyl ether. Critical Reviews in Toxicology, 2009, 39, 1-44.	1.9	128
3	Low-dose effects and nonmonotonic dose–responses of endocrine disrupting chemicals: Has the case been made?. Regulatory Toxicology and Pharmacology, 2012, 64, 130-133.	1.3	117
4	Linear low-dose extrapolation for noncancer health effects is the exception, not the rule. Critical Reviews in Toxicology, 2011, 41, 1-19.	1.9	108
5	An Updated Weight of the Evidence Evaluation of Reproductive and Developmental Effects of Low Doses of Bisphenol A. Critical Reviews in Toxicology, 2006, 36, 387-457.	1.9	99
6	Weight-of-Evidence Evaluation of Reproductive and Developmental Effects of Low Doses of Bisphenol A. Critical Reviews in Toxicology, 2009, 39, 1-75.	1.9	84
7	Weight of the Evidence Evaluation of Low-Dose Reproductive and Developmental Effects of Bisphenol A. Human and Ecological Risk Assessment (HERA), 2004, 10, 875-921.	1.7	83
8	A survey of frameworks for best practices in weight-of-evidence analyses. Critical Reviews in Toxicology, 2013, 43, 753-784.	1.9	83
9	Critical comments on the WHO-UNEP State of the Science of Endocrine Disrupting Chemicals – 2012. Regulatory Toxicology and Pharmacology, 2014, 69, 22-40.	1.3	72
10	Issues in the Design and Interpretation of Chronic Toxicity and Carcinogenicity Studies in Rodents: Approaches to Dose Selection. Critical Reviews in Toxicology, 2007, 37, 729-837.	1.9	64
11	Measurement error in environmental epidemiology and the shape of exposure-response curves. Critical Reviews in Toxicology, 2011, 41, 651-671.	1.9	60
12	Recommendations for the conduct of systematic reviews in toxicology and environmental health research (COSTER). Environment International, 2020, 143, 105926.	4.8	57
13	Is exposure to formaldehyde in air causally associated with leukemia?—A hypothesis-based weight-of-evidence analysis. Critical Reviews in Toxicology, 2011, 41, 555-621.	1.9	56
14	Hypothesis-based weight of evidence: A tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action—naphthalene as an example. Critical Reviews in Toxicology, 2010, 40, 671-696.	1.9	54
15	Quantitative assessment of lung and bladder cancer risk and oral exposure to inorganic arsenic: Meta-regression analyses of epidemiological data. Environment International, 2017, 106, 178-206.	4.8	39
16	Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology, 2015, 331, 78-99.	2.0	37
17	Systematic comparison of study quality criteria. Regulatory Toxicology and Pharmacology, 2016, 76, 187-198.	1.3	36
18	A critique of the European Commission Document, "State of the Art Assessment of Endocrine Disrupters― Critical Reviews in Toxicology, 2012, 42, 465-473.	1.9	28

LORENZ R RHOMBERG

#	Article	IF	CITATIONS
19	Hypothesisâ€Based Weight of Evidence: An Approach to Assessing Causation and its Application to Regulatory Toxicology. Risk Analysis, 2015, 35, 1114-1124.	1.5	28
20	Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Critical Reviews in Toxicology, 2016, 46, 1-42.	1.9	28
21	Hypothesis-based weight-of-evidence evaluation of the neurodevelopmental effects of chlorpyrifos. Critical Reviews in Toxicology, 2011, 41, 822-903.	1.9	25
22	Comments on the opinions published by Bergman etÂal. (2015) on Critical Comments on the WHO-UNEP State of the Science of Endocrine Disrupting Chemicals (Lamb etÂal., 2014). Regulatory Toxicology and Pharmacology, 2015, 73, 754-757.	1.3	24
23	Methods for Identifying a Default Cross-Species Scaling Factor. Human and Ecological Risk Assessment (HERA), 2006, 12, 1094-1127.	1.7	23
24	Improving Weight of Evidence Approaches to Chemical Evaluations. Risk Analysis, 2015, 35, 186-192.	1.5	19
25	A bounding quantitative cancer risk assessment for occupational exposures to asphalt emissions during road paving operations. Critical Reviews in Toxicology, 2018, 48, 713-737.	1.9	15
26	Evaluation of the causal framework used for setting National Ambient Air Quality Standards. Critical Reviews in Toxicology, 2013, 43, 829-849.	1.9	13
27	Seeking Optimal Design for Animal Bioassay Studies. Toxicological Sciences, 2005, 84, 1-3.	1.4	12
28	Toxicity Testing in the 21st Century: How will it Affect Risk Assessment?. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 361-375.	2.9	12
29	Hypothesis-Based Weight-of-Evidence evaluation of methanol as a human carcinogen. Regulatory Toxicology and Pharmacology, 2012, 62, 278-291.	1.3	12
30	Hypothesis-based weight-of-evidence evaluation of the human carcinogenicity of toluene diisocyanate. Critical Reviews in Toxicology, 2013, 43, 391-435.	1.9	11
31	Quantitative cancer risk assessment for occupational exposures to asphalt fumes during built-up roofing asphalt (BURA) operations. Critical Reviews in Toxicology, 2015, 45, 873-918.	1.9	11
32	Toxicological evaluation of carcinogenicity of the pyrethroid imiprothrin in rats and mice. Regulatory Toxicology and Pharmacology, 2019, 105, 1-14.	1.3	11
33	Historical perspective on the role of cell proliferation in carcinogenesis for DNA-reactive and non-DNA-reactive carcinogens: Arsenic as an example. Toxicology, 2021, 456, 152783.	2.0	8
34	Risk Assessment in the 21st Century: Changes Wrought by Changing Science. Risk Analysis, 2009, 29, 488-489.	1.5	7
35	Contrasting directions and directives on hazard identification for formaldehyde carcinogenicity. Regulatory Toxicology and Pharmacology, 2015, 73, 829-833.	1.3	6
36	Hypothesis-based weight-of-evidence evaluation of methyl methacrylate olfactory effects in humans and derivation of an occupational exposure level. Regulatory Toxicology and Pharmacology, 2013, 66, 217-233.	1.3	5

LORENZ R RHOMBERG

#	Article	IF	CITATIONS
37	Practical Risk Assessment and Management Issues Arising were we to Adopt Low-Dose Linearity for all Endpoints. Dose-Response, 2011, 9, dose-response.1.	0.7	4
38	Strengthening the foundation of next generation risk assessment. Regulatory Toxicology and Pharmacology, 2014, 68, 160-170.	1.3	4
39	Response to Kortenkamp et al. Rebuttal. Critical Reviews in Toxicology, 2012, 42, 790-791.	1.9	3
40	Incorporating Low-Dose Epidemiology Data in a Chlorpyrifos Risk Assessment. Dose-Response, 2013, 11, dose-response.1.	0.7	3
41	Are the elements of the proposed ozone National Ambient Air Quality Standards informed by the best available science?. Regulatory Toxicology and Pharmacology, 2015, 72, 134-140.	1.3	3
42	Weighing evidence and assessing uncertainties. EFSA Journal, 2016, 14, e00511.	0.9	2
43	CERHR conclusions would have been strengthened by a more explicit weightâ€ofâ€evidence analysis. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2008, 83, 155-156.	1.4	1
44	Uncertainty Factor Conundrums: What Lessons Should We Draw?. Risk Analysis, 2010, 30, 349-352.	1.5	1
45	Comment: EPI/TOX Perspective on Chapter 2: What Data Sets Per se Say. , 0, , 87-96.		0
46	Bisphenol A (4,4′-Isopropylidenediphenol). , 0, , 795-808.		0
47	Incorporating Low-dose Epidemiology Data in a Chlorpyrifos Risk Assessment. Dose-Response, 2013, 11, 207-19.	0.7	Ο