List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761397/publications.pdf Version: 2024-02-01

DONG-SHENG GUO

#	Article	IF	CITATIONS
1	Calixarene-based supramolecular polymerization in solution. Chemical Society Reviews, 2012, 41, 5907.	38.1	559
2	Supramolecular Chemistry of <i>p</i> -Sulfonatocalix[<i>n</i>]arenes and Its Biological Applications. Accounts of Chemical Research, 2014, 47, 1925-1934.	15.6	518
3	Cholinesterase-Responsive Supramolecular Vesicle. Journal of the American Chemical Society, 2012, 134, 10244-10250.	13.7	390
4	All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode. Journal of the American Chemical Society, 2014, 136, 16461-16464.	13.7	375
5	Multistimuli Responsive Supramolecular Vesicles Based on the Recognition of <i>p</i> -Sulfonatocalixarene and its Controllable Release of Doxorubicin. ACS Nano, 2011, 5, 2880-2894.	14.6	284
6	Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chemical Science, 2011, 2, 1722.	7.4	229
7	Calixareneâ€Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Imageâ€Guided Cancer Surgery. Angewandte Chemie - International Edition, 2020, 59, 10008-10012.	13.8	208
8	Biomarker Displacement Activation: A General Host–Guest Strategy for Targeted Phototheranostics in Vivo. Journal of the American Chemical Society, 2018, 140, 4945-4953.	13.7	203
9	Supramolecular Assembly of Perylene Bisimide with <i>β</i> yclodextrin Grafts as a Solid‣tate Fluorescence Sensor for Vapor Detection. Advanced Functional Materials, 2009, 19, 2230-2235.	14.9	192
10	Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 1-21.	1.6	187
11	Broadâ€Spectrum Tunable Photoluminescent Nanomaterials Constructed from a Modular Lightâ€Harvesting Platform Based on Macrocyclic Amphiphiles. Advanced Materials, 2016, 28, 7666-7671.	21.0	175
12	Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 2768-2794.	13.8	171
13	Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nature Chemistry, 2019, 11, 86-93.	13.6	148
14	Supramolecular Architectures of β-Cyclodextrin-Modified Chitosan and Pyrene Derivatives Mediated by Carbon Nanotubes and Their DNA Condensation. Journal of the American Chemical Society, 2008, 130, 10431-10439.	13.7	145
15	Highly Effective Binding of Viologens by <i>p</i> -Sulfonatocalixarenes for the Treatment of Viologen Poisoning. Journal of Medicinal Chemistry, 2009, 52, 6402-6412.	6.4	142
16	Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. Chemical Communications, 2010, 46, 2620.	4.1	133
17	Supramolecular prodrugs based on host–guest interactions. Chemical Society Reviews, 2020, 49, 2303-2315.	38.1	133
18	Photomodulated Fluorescence of Supramolecular Assemblies of Sulfonatocalixarenes and Tetraphenylethene. ACS Nano, 2014, 8, 1609-1618.	14.6	128

#	Article	IF	CITATIONS
19	A Noncovalent Fluorescence Turnâ€on Strategy for Hypoxia Imaging. Angewandte Chemie - International Edition, 2019, 58, 2377-2381.	13.8	123
20	Highly Effective Binding of Methyl Viologen Dication and Its Radical Cation by <i>p</i> -Sulfonatocalix[4,5]arenes. Journal of Organic Chemistry, 2007, 72, 7775-7778.	3.2	122
21	Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants. Nature Communications, 2019, 10, 5762.	12.8	116
22	Self-Assembly of Amphiphilic Peryleneâ `Cyclodextrin Conjugate and Vapor Sensing for Organic Amines. Journal of Organic Chemistry, 2010, 75, 7258-7264.	3.2	113
23	Ultrasensitive and specific fluorescence detection of a cancer biomarker <i>via</i> nanomolar binding to a guanidinium-modified calixarene. Chemical Science, 2018, 9, 2087-2091.	7.4	113
24	The Structure and Thermodynamics of Calix[n]arene Complexes with Dipyridines and Phenanthroline in Aqueous Solution Studied by Microcalorimetry and NMR Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 3428-3434.	2.6	97
25	A self-assembled white-light-emitting system in aqueous medium based on a macrocyclic amphiphile. Chemical Communications, 2017, 53, 392-395.	4.1	86
26	Temperatureâ€Controlled Supramolecular Vesicles Modulated by <i>p</i> ulfonatocalix[5]arene with Pyrene. Chemistry - A European Journal, 2010, 16, 8006-8011.	3.3	82
27	A General Hypoxiaâ€Responsive Molecular Container for Tumorâ€Targeted Therapy. Advanced Materials, 2020, 32, e1908435.	21.0	81
28	A Supramolecular Vesicle Based on the Complexation of <i>p</i> â€6ulfonatocalixarene with Protamine and its Trypsinâ€Triggered Controllableâ€Release Properties. Chemistry - A European Journal, 2016, 22, 1475-1483.	3.3	74
29	Reversible and Selective Sensing of Aniline Vapor by Perylene-Bridged Bis(cyclodextrins) Assembly. Journal of Organic Chemistry, 2011, 76, 6101-6107.	3.2	72
30	Fluorescence Monitoring of Peptide Transport Pathways into Large and Giant Vesicles by Supramolecular Host–Dye Reporter Pairs. Journal of the American Chemical Society, 2019, 141, 20137-20145.	13.7	69
31	Assembling features of calixarene-based amphiphiles and supra-amphiphiles. Materials Chemistry Frontiers, 2020, 4, 46-98.	5.9	65
32	Supra-amphiphilic aggregates formed by p-sulfonatocalix[4]arenes and the antipsychotic drug chlorpromazine. Soft Matter, 2014, 10, 2253-2263.	2.7	64
33	Novel Permethylated β-Cyclodextrin Derivatives Appended with Chromophores as Efficient Fluorescent Sensors for the Molecular Recognition of Bile Salts. Journal of Organic Chemistry, 2007, 72, 8227-8234.	3.2	63
34	Cucurbiturilâ€Modulated Supramolecular Assemblies: From Cyclic Oligomers to Linear Polymers. Chemistry - A European Journal, 2012, 18, 5087-5095.	3.3	62
35	Cation-Controlled Aqueous Dispersions of Alginic-Acid-Wrapped Multi-Walled Carbon Nanotubes. Small, 2006, 2, 874-878.	10.0	61
36	Effective Enlargement of Fluorescence Resonance Energy Transfer of Poly-Porphyrin Mediated by β-Cyclodextrin Dimers. Journal of Organic Chemistry, 2010, 75, 3600-3607.	3.2	61

#	Article	IF	CITATIONS
37	Amphiphilic p-Sulfonatocalix[4]arene as "Drug Chaperone―for Escorting Anticancer Drugs. Scientific Reports, 2015, 5, 9019.	3.3	61
38	Macrocyclicâ€Amphiphileâ€Based Selfâ€Assembled Nanoparticles for Ratiometric Delivery of Therapeutic Combinations to Tumors. Advanced Materials, 2021, 33, e2007719.	21.0	61
39	Nano‣upramolecular Assemblies Constructed from Water‣oluble Bis(calix[5]arenes) with Porphyrins and Their Photoinduced Electron Transfer Properties. Chemistry - an Asian Journal, 2009, 4, 436-445.	3.3	60
40	Supramolecular color-tunable photoluminescent materials based on a chromophore cascade as security inks with dual encryption. Materials Chemistry Frontiers, 2017, 1, 1847-1852.	5.9	60
41	A Comparative Study of Complexation of β-Cyclodextrin, Calix[4]arenesulfonate and Cucurbit[7]uril with Dye Guests: Fluorescence Behavior and Binding Ability. Supramolecular Chemistry, 2007, 19, 517-523.	1.2	58
42	Controlling the Isomerization Rate of an Azo-BF ₂ Switch Using Aggregation. Journal of the American Chemical Society, 2017, 139, 1037-1040.	13.7	57
43	Supramolecular Assemblies of Sulfonatocalixarenes with Phenanthroline: Factors Governing Capsule Formation versus Bilayer Arrangements. Chemistry - A European Journal, 2007, 13, 466-472.	3.3	56
44	Enzyme-responsive supramolecular polymers by complexation of bis(p-sulfonatocalixarenes) with suberyl dicholine-based pseudorotaxane. Chemical Communications, 2013, 49, 6779.	4.1	55
45	Supramolecular binary hydrogels from calixarenes and amino acids and their entrapment–release of model dye molecules. Soft Matter, 2011, 7, 1756-1762.	2.7	53
46	Tetraphenylethene Derivatives with Different Numbers of Positively Charged Side Arms have Different Multimeric Gâ€Quadruplex Recognition Specificity. Chemistry - A European Journal, 2015, 21, 13253-13260.	3.3	53
47	Assembly behavior of inclusion complexes of β-cyclodextrin with 4-hydroxyazobenzene and 4-aminoazobenzene. Organic and Biomolecular Chemistry, 2005, 3, 584-591.	2.8	52
48	The Structures and Thermodynamics of Complexes between Water-Soluble Calix[4]arenes and Dipyridinium Ions. European Journal of Organic Chemistry, 2005, 2005, 162-170.	2.4	50
49	Binding Behaviors of <i>p</i> -Sulfonatocalix[4]arene with Gemini Guests. Journal of Physical Chemistry B, 2013, 117, 1978-1987.	2.6	50
50	Phosphorylationâ€Responsive Membrane Transport of Peptides. Angewandte Chemie - International Edition, 2017, 56, 15742-15745.	13.8	49
51	Gene delivery based on macrocyclic amphiphiles. Theranostics, 2019, 9, 3094-3106.	10.0	47
52	Inclusion of neutral guests by water-soluble macrocyclic hosts – a comparative thermodynamic investigation with cyclodextrins, calixarenes and cucurbiturils. Supramolecular Chemistry, 2016, 28, 384-395.	1.2	45
53	Molecular Recognition Thermodynamics of Pyridine Derivatives by Sulfonatocalixarenes at Different pH Values. Journal of Organic Chemistry, 2006, 71, 6468-6473.	3.2	43
54	Molecular Aggregation Behavior of Perylene-Bridged Bis(β-cyclodextrin) and Its Electronic Interactions upon Selective Binding with Aromatic Guests. Journal of Physical Chemistry B, 2010, 114, 101-106.	2.6	43

#	Article	IF	CITATIONS
55	Excitonic coupling interactions in the self-assembly of perylene-bridged bis(β-cyclodextrin)s and porphyrin. Chemical Communications, 2012, 48, 3644.	4.1	43
56	Phosphatase-responsive amphiphilic calixarene assembly. RSC Advances, 2013, 3, 8058.	3.6	42
57	Specifically Monitoring Butyrylcholinesterase by Supramolecular Tandem Assay. Chemistry - A European Journal, 2013, 19, 8755-8759.	3.3	42
58	Facile Fluorescence Monitoring of Gut Microbial Metabolite Trimethylamine <i>N</i> -oxide via Molecular Recognition of Guanidinium-Modified Calixarene. Theranostics, 2019, 9, 4624-4632.	10.0	41
59	Benzyl Effects of Supramolecular Architectures Constructed by p-Sulfonatocalix[4]arene and Viologen Guests: from Simple 2:1 Complex to Polymeric Capsules. Crystal Growth and Design, 2008, 8, 3514-3517.	3.0	40
60	Hierarchical host–guest assemblies formed on dodecaborate-coated gold nanoparticles. Chemical Communications, 2017, 53, 4616-4619.	4.1	40
61	Macrocyclic Amphiphiles for Drug Delivery. Israel Journal of Chemistry, 2019, 59, 913-927.	2.3	40
62	Calixarene-induced aggregation of perylene bisimides. Organic and Biomolecular Chemistry, 2012, 10, 720-723.	2.8	39
63	A host-guest drug delivery nanosystem for supramolecular chemotherapy. Journal of Controlled Release, 2020, 324, 124-133.	9.9	39
64	Recognition and Removal of Amyloidâ€Î² by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease. Advanced Materials, 2021, 33, e2006483.	21.0	39
65	Effect of Lowerâ€Rim Alkylation of <i>p</i> ‣ulfonatocalix[4]arene on the Thermodynamics of Host–Guest Complexation. European Journal of Organic Chemistry, 2010, 2010, 1704-1710.	2.4	36
66	Thermodynamic origins of selective binding affinity between p-sulfonatocalix[4,5]arenes with biguanidiniums. Organic and Biomolecular Chemistry, 2012, 10, 1527.	2.8	36
67	A novel supramolecular ternary polymer with two orthogonal host–guest interactions. Chemical Communications, 2012, 48, 11319.	4.1	36
68	Binding to Amyloidâ€Î² Protein by Photothermal Bloodâ€Brain Barrierâ€Penetrating Nanoparticles for Inhibition and Disaggregation of Fibrillation. Advanced Functional Materials, 2021, 31, 2102953.	14.9	36
69	A hypoxia-responsive supramolecular formulation for imaging-guided photothermal therapy. Theranostics, 2022, 12, 396-409.	10.0	36
70	Diverse Conformation and Extended Structure of p-Sulfonatothiacalix[4]arene Manipulated by Guest Molecules. Crystal Growth and Design, 2006, 6, 1399-1406.	3.0	35
71	Fluorescent nanoassemblies between tetraphenylethenes and sulfonatocalixarenes: a systematic study of calixarene-induced aggregation. Organic Chemistry Frontiers, 2016, 3, 53-61.	4.5	34
72	Controlled Selfâ€Assembly by Monoâ€ <i>p</i> â€sulfonatocalix[<i>n</i>]arenes and Bisâ€ <i>p</i> â€sulfonatocalix[<i>n</i>]arenes. Chemistry - A European Journal, 2012, 18, 8758-8764.	3.3	33

#	Article	IF	CITATIONS
73	Supramolecular polymeric vesicles formed by p-sulfonatocalix[4]arene and chitosan with multistimuli responses. Soft Matter, 2015, 11, 290-296.	2.7	33
74	Differential calixarene receptors create patterns that discriminate glycosaminoglycans. Organic Chemistry Frontiers, 2018, 5, 2685-2691.	4.5	33
75	Heparin reversal by an oligoethylene glycol functionalized guanidinocalixarene. Chemical Science, 2020, 11, 9623-9629.	7.4	33
76	Supramolecular Bioimaging through Signal Amplification by Combining Indicator Displacement Assay with Förster Resonance Energy Transfer. Angewandte Chemie - International Edition, 2021, 60, 19614-19619.	13.8	33
77	Molecular Selective Binding of Pyridinium Guest Ions by Water-Soluble Calix[4]arenes. European Journal of Organic Chemistry, 2005, 2005, 4581-4588.	2.4	31
78	Complexation of <i>p</i> ‣ulfonatocalixarenes with Local Anaesthetics Guests: Binding Structures, Stabilities, and Thermodynamic Origins. European Journal of Organic Chemistry, 2012, 2012, 3962-3971.	2.4	31
79	Supramolecular Assembly with Multiple Preorganised Ï€â€Electronic Cages. Chemistry - A European Journal, 2013, 19, 96-100.	3.3	29
80	Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for targeted kidney injury imaging and therapy. Journal of Nanobiotechnology, 2021, 19, 451.	9.1	29
81	Unique conformation and packing structure of p-sulfonatocalix[5]arene induced by 1,2-bis(pyridinium)ethane compounds. Chemical Communications, 2006, , 2592.	4.1	27
82	Synthesis of Doubly Ethylâ€Bridged Bis(<i>p</i> â€sulfonatocalix[4]arene) and Its Supramolecular Polymerization with Viologen Dimer. Chemistry - A European Journal, 2014, 20, 4023-4031.	3.3	27
83	Supramolecular Radiosensitizer Based on Hypoxiaâ€Responsive Macrocycle. Advanced Science, 2022, 9, e2104349.	11.2	27
84	Thermodynamics of interactions between organic ammonium ions and sulfonatocalixarenes. Thermochimica Acta, 2006, 443, 132-135.	2.7	26
85	Host–Guest Complexation of Amphiphilic Molecules at the Air–Water Interface Prevents Oxidation by Hydroxyl Radicals and Singlet Oxygen. Angewandte Chemie - International Edition, 2020, 59, 12684-12688.	13.8	26
86	Coassembly of Macrocyclic Amphiphiles for Anti-β-Amyloid Therapy of Alzheimer's Disease. CCS Chemistry, 2021, 3, 2485-2497.	7.8	26
87	Macrocycles containing azo groups: recognition, assembly and application. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 1-79.	1.6	25
88	Supramolecular design based activatable magnetic resonance imaging. View, 2021, 2, 20200059.	5.3	25
89	Nanoarchitectures Constructed from Resulting Polypseudorotaxanes of theβ-Cyclodextrin/4,4â€~-Dipyridine Inclusion Complex with Co2+and Zn2+Coordination Centers. Chemistry of Materials, 2006, 18, 4423-4429.	6.7	24
90	A Noncovalent Fluorescence Turnâ€on Strategy for Hypoxia Imaging. Angewandte Chemie, 2019, 131, 2399-2403.	2.0	24

#	Article	IF	CITATIONS
91	Calixareneâ€Embedded Nanoparticles for Interferenceâ€Free Gene–Drug Combination Cancer Therapy. Small, 2021, 17, e2006223.	10.0	24
92	Comparable Inclusion and Aggregation Structures ofp-Sulfonatothiacalix[4]arene andp-Sulfonatocalix[4]arene upon Complexation with Quinoline Guests. Crystal Growth and Design, 2007, 7, 2601-2608.	3.0	23
93	Supramolecular chain-like aggregates and polymeric sandwich complexes constructed from p-sulfonatocalix[4,6]arenes with (8-hydroxy)quinoline guests. CrystEngComm, 2008, 10, 675.	2.6	23
94	Facile fabrication of cross-linked vesicle via "surface clicking―of calixarene-based supra-amphiphiles. Chemical Communications, 2015, 51, 16557-16560.	4.1	23
95	Direct visualization and real-time monitoring of dissipative self-assembly by synchronously coupled aggregation-induced emission. Materials Chemistry Frontiers, 2017, 1, 2651-2655.	5.9	23
96	A Supramolecular Antidote to Macromolecular Toxins Prepared through Coassembly of Macrocyclic Amphiphiles. Advanced Materials, 2021, 33, e2104310.	21.0	22
97	Drug in Drug: A Host–Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Antiâ€Inflammation. Advanced Materials, 2022, 34, .	21.0	22
98	Polymeric Capsules and Honeycomb Aggregates Formed by <i>p</i> -Sulfonatocalix[6]arene with Phenanthrolinium Compounds. Crystal Growth and Design, 2007, 7, 1672-1675.	3.0	21
99	<i>p</i> ‣ulfonatocalix[4]arene Supramolecular Polymers: Formation by Host–Guest Interactions and Light Response. Asian Journal of Organic Chemistry, 2012, 1, 155-159.	2.7	21
100	Unique Regioselective Binding of Permethylated β yclodextrin with Azobenzene Derivatives. European Journal of Organic Chemistry, 2009, 2009, 923-931.	2.4	20
101	Solid-state supramolecular architectures by p-sulfonatocalix[5]arene with bispyridinium derivatives: factors of spacers and terminal groups. CrystEngComm, 2010, 12, 947-952.	2.6	20
102	Sequentially Programmable and Cellularly Selective Assembly of Fluorescent Polymerized Vesicles for Monitoring Cell Apoptosis. Advanced Science, 2017, 4, 1700310.	11.2	19
103	Complexation of a guanidinium-modified calixarene with diverse dyes and investigation of the corresponding photophysical response. Beilstein Journal of Organic Chemistry, 2019, 15, 1394-1406.	2.2	19
104	Calixareneâ€Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Imageâ€Guided Cancer Surgery. Angewandte Chemie, 2020, 132, 10094-10098.	2.0	19
105	An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysineâ€rich Peptides and Proteins. Angewandte Chemie - International Edition, 2021, 60, 1875-1882.	13.8	18
106	Strong binding and fluorescence sensing of bisphosphonates by guanidinium-modified calix[5]arene. Beilstein Journal of Organic Chemistry, 2018, 14, 1840-1845.	2.2	17
107	Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angewandte Chemie, 2021, 133, 2800-2828.	2.0	17
108	Supramolecular imaging of spermine in cancer cells. Nanoscale, 2021, 13, 15362-15368.	5.6	17

#	Article	IF	CITATIONS
109	Sensitive fluorescence detection of saliva pepsin by a supramolecular tandem assay enables the diagnosis of gastroesophageal reflux disease. Supramolecular Chemistry, 2021, 33, 80-87.	1.2	17
110	Water-filled channels constructed by supramolecular complex of partial-cone thiacalix[4]arene tetrasulfonate. Journal of Molecular Structure, 2005, 734, 241-245.	3.6	16
111	Electro-responsive Binary Hydrogels Based on Calixarene and Viologens. Acta Chimica Sinica, 2012, 70, 1709.	1.4	16
112	A Novel Supramolecular Assembly Constructed by Cu/imidazole Complex with 1,2-Alternatep-Sulfonatothiacalix[4]arene. Crystal Growth and Design, 2007, 7, 1038-1041.	3.0	15
113	Molecular recognition of amphiphilic <i>p</i> -sulfonatocalix[4]arene with organic ammoniums. Supramolecular Chemistry, 2015, 27, 336-345.	1.2	15
114	Noninvasive and Individualâ€Centered Monitoring of Uric Acid for Precaution of Hyperuricemia via Optical Supramolecular Sensing. Advanced Science, 2022, 9, e2104463.	11.2	15
115	Supramolecular Tandem Assay for Pyridoxalâ€5â€2â€phosphate by the Reporter Pair of Guanidinocalix[5]Arene and Fluorescein. ChemistryOpen, 2019, 8, 1437-1440.	1.9	14
116	Deep Cavitand Calixarene–Solubilized Fullerene as a Potential Photodynamic Agent. Frontiers in Chemistry, 2021, 9, 710808.	3.6	14
117	Facile and label-free fluorescence strategy for evaluating the influence of bioactive ingredients on FMO3 activity via supramolecular host-guest reporter pair. Biosensors and Bioelectronics, 2021, 192, 113488.	10.1	14
118	p-Sulfonatocalix[4]arene-induced amphiphilic aggregation of fluorocarbon surfactant. Science China Chemistry, 2014, 57, 371-378.	8.2	13
119	A hyaluronidase/ATP tandem stimuli-responsive supramolecular assembly. Chemical Communications, 2019, 55, 14387-14390.	4.1	13
120	Amphiphilic p-sulfonatocalix[6]arene based self-assembled nanostructures for enhanced clarithromycin activity against resistant Streptococcus Pneumoniae. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110676.	5.0	13
121	A host–guest ATP responsive strategy for intracellular delivery of phosphopeptides. Chemical Communications, 2020, 56, 5512-5515.	4.1	13
122	Conformational transition effects of anion recognition by calix[4]arene derivatives. Supramolecular Chemistry, 2009, 21, 465-472.	1.2	12
123	Molecular recognition of sulfonatocalixarene with organic cations at the self-assembled interface: a thermodynamic investigation. Chinese Chemical Letters, 2017, 28, 787-792.	9.0	12
124	Inhibition of insulin fibrillation by amphiphilic sulfonatocalixarene. Chinese Chemical Letters, 2020, 31, 1873-1876.	9.0	12
125	Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo. Nano Research, 2022, 15, 7295-7303.	10.4	12
126	Phosphorylierung reguliert den Membrantransport von Peptiden. Angewandte Chemie, 2017, 129, 15948-15951.	2.0	10

#	Article	IF	CITATIONS
127	Assembly-enhanced molecular recognition of calix[6]arene. Supramolecular Chemistry, 2018, 30, 562-567.	1.2	10
128	Macrocyclic Compounds as Amphiphile Adaptors. Current Organic Chemistry, 2018, 22, 2127-2149.	1.6	9
129	A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
130	Construction of Complex Macromulticyclic Peptides via Stitching with Formaldehyde and Guanidine. Journal of the American Chemical Society, 2022, 144, 10080-10090.	13.7	9
131	Fast naked-eye detection of zinc ions by molecular assembly-assisted polymerization of diacetylene. Nanoscale, 2018, 10, 18829-18834.	5.6	8
132	Host–Guest Complexation of Amphiphilic Molecules at the Air–Water Interface Prevents Oxidation by Hydroxyl Radicals and Singlet Oxygen. Angewandte Chemie, 2020, 132, 12784-12788.	2.0	8
133	Synthesis of I -cystine modified cyclodextrin monomers and dimers with primary-side versus secondary-side and their molecular binding behaviours. Supramolecular Chemistry, 2008, 20, 609-617.	1.2	6
134	Highly selective fluorescent chemosensor for Na+ based on pyrene-modified calix[4]arene derivative. Science in China Series B: Chemistry, 2009, 52, 513-517.	0.8	6
135	Guest releasing from solution to solid-state triggered by cyclomaltohexaose (α-cyclodextrin) aggregation. Carbohydrate Research, 2010, 345, 2670-2675.	2.3	6
136	Thermodynamics of complexes between nucleobase-modified β-cyclodextrins and bile salts. Thermochimica Acta, 2008, 470, 108-112.	2.7	5
137	Solidâ€state Supramolecular Architectures by <i>p</i> â€Sulfonatocalix[4]arene with Bispyridinium Derivatives. Chinese Journal of Chemistry, 2010, 28, 1575-1579.	4.9	5
138	Structurally screening calixarenes as peptide transport activators. Chemical Communications, 2021, 57, 12627-12630.	4.1	5
139	Fluorescence Enhancement by Calixarene Supramolecular Aggregate. Molecules, 2020, 25, 5912.	3.8	4
140	A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angewandte Chemie, 2022, 134, .	2.0	4
141	A Calixarene Assembly Strategy of Combined Anti-Neuroinflammation and Drug Delivery Functions for Traumatic Brain Injury Therapy. Molecules, 2022, 27, 2967.	3.8	4
142	Binding behaviour and solubilisation of p-sulfonatocalixarenes to cinchona alkaloids. Supramolecular Chemistry, 2014, 26, 809-816.	1.2	3
143	Supramolecular Bioimaging through Signal Amplification by Combining Indicator Displacement Assay with Förster Resonance Energy Transfer. Angewandte Chemie, 2021, 133, 19766-19771.	2.0	3
144	Superchaotropic Boron Clusters as Membrane Carriers for the Transport of Hydrophilic Cargos. Angewandte Chemie - International Edition, 2022, 61, e202204979.	13.8	3

#	Article	IF	CITATIONS
145	Hierarchically self-assembled fluorescent nanoparticles for near-infrared lysosome-targeted imaging. Chinese Chemical Letters, 2018, 29, 1709-1710.	9.0	2
146	An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysineâ€rich Peptides and Proteins. Angewandte Chemie, 2021, 133, 1903-1910.	2.0	2
147	Study on assembling compactness of amphiphilic calixarenes by fluorescence anisotropy. Supramolecular Chemistry, 2021, 33, 527-533.	1.2	2
148	Supramolecular Medicine of Diverse Calixarene Derivatives. , 2019, , 1-30.		1
149	Supramolecular Medicine of Diverse Calixarene Derivatives. , 2020, , 201-229.		1
150	Mesoporous carbon nanomaterial prepared directly by the second-side modified cyclodextrin through silica as template. Journal of Chemical Research, 2004, 2004, 533-535.	1.3	0
151	Superchaotropic Boron Clusters as Membrane Carriers for the Transport of Hydrophilic Cargos. Angewandte Chemie, 2022, 134, .	2.0	0