Pedro Elez-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of High Pressure and Pulsed Electric Fields on Bioactive Compounds and Antioxidant Activity of Orange Juice in Comparison with Traditional Thermal Processing. Journal of Agricultural and Food Chemistry, 2005, 53, 4403-4409.	5.2	315
2	Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 2531-2548.	10.3	203
3	Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 2015, 14, 33-43.	3.4	191
4	Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chemistry, 2013, 136, 206-212.	8.2	183
5	Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 2007, 102, 201-209.	8.2	171
6	Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innovative Food Science and Emerging Technologies, 2007, 8, 55-62.	5.6	160
7	Changes in Vitamin C, Phenolic, and Carotenoid Profiles Throughout in Vitro Gastrointestinal Digestion of a Blended Fruit Juice. Journal of Agricultural and Food Chemistry, 2013, 61, 1859-1867.	5.2	156
8	Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. European Food Research and Technology, 2006, 223, 487-493.	3.3	154
9	Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. European Food Research and Technology, 2006, 222, 321-329.	3.3	132
10	Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT - Food Science and Technology, 2011, 44, 834-839.	5.2	127
11	Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 2006, 86, 71-81.	3.5	121
12	Nutritional Approaches and Health-Related Properties of Plant Foods Processed by High Pressure and Pulsed Electric Fields. Critical Reviews in Food Science and Nutrition, 2009, 49, 552-576.	10.3	121
13	Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiology, 2005, 22, 311-319.	4.2	115
14	Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2000, 1, 57-67.	5.6	106
15	Effects of Pulsed Electric Fields on Pathogenic Microorganisms of Major Concern in Fluid Foods: A Review. Critical Reviews in Food Science and Nutrition, 2008, 48, 747-759.	10.3	103
16	In vitro bioaccessibility of health-related compounds as affected by the formulation of fruit juice- and milk-based beverages. Food Research International, 2014, 62, 771-778.	6.2	94
17	Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments. Food Chemistry, 2013, 136, 199-205.	8.2	81
18	Microbiological and biochemical stability of fresh-cut apples preserved by modified atmosphere packaging. Innovative Food Science and Emerging Technologies, 2004, 5, 215-224.	5.6	78

PEDRO ELEZ-MARTINEZ

#	Article	IF	CITATIONS
19	Effects of Pulsed Electric Fields on the Bioactive Compound Content and Antioxidant Capacity of Tomato Fruit. Journal of Agricultural and Food Chemistry, 2012, 60, 3126-3134.	5.2	74
20	Changes in the Polyphenol Profile of Tomato Juices Processed by Pulsed Electric Fields. Journal of Agricultural and Food Chemistry, 2012, 60, 9667-9672.	5.2	73
21	Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages. Food and Function, 2016, 7, 380-389.	4.6	73
22	Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innovative Food Science and Emerging Technologies, 2015, 29, 70-77.	5.6	72
23	Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. Journal of Food Engineering, 2007, 78, 184-193.	5.2	71
24	Evaluation of browning effect on avocado purée preserved by combined methods. Innovative Food Science and Emerging Technologies, 2000, 1, 261-268.	5.6	70
25	Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chemistry, 2013, 141, 3131-3138.	8.2	68
26	Inactivation of Saccharomyces cerevisiae Suspended in Orange Juice Using High-Intensity Pulsed Electric Fields. Journal of Food Protection, 2004, 67, 2596-2602.	1.7	67
27	Pulsed electric fields–processed orange juice consumption increases plasma vitamin C and decreases F2-isoprostanes in healthy humans. Journal of Nutritional Biochemistry, 2004, 15, 601-607.	4.2	62
28	Kinetics of polyphenol oxidase activity inhibition and browning of avocado purée preserved by combined methods. Journal of Food Engineering, 2002, 55, 131-137.	5.2	58
29	Enhancing the carotenoid content of tomato fruit with pulsed electric field treatments: Effects on respiratory activity and quality attributes. Postharvest Biology and Technology, 2018, 137, 113-118.	6.0	58
30	In vitro bioaccessibility of health-related compounds from a blended fruit juice–soymilk beverage: Influence of the food matrix. Journal of Functional Foods, 2014, 7, 161-169.	3.4	55
31	Stability of health-related compounds in plant foods through the application of non thermal processes. Trends in Food Science and Technology, 2012, 23, 111-123.	15.1	49
32	Pulsed electric fields affect endogenous enzyme activities, respiration and biosynthesis of phenolic compounds in carrots. Postharvest Biology and Technology, 2020, 168, 111284.	6.0	44
33	Intake of Mediterranean vegetable soup treated by pulsed electric fields affects plasma vitamin C and antioxidant biomarkers in humans. International Journal of Food Sciences and Nutrition, 2005, 56, 115-124.	2.8	41
34	Food Preservation by Pulsed Electric Fields: An Engineering Perspective. Food Engineering Reviews, 2011, 3, 94-107.	5.9	40
35	Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: Effects on cell viability and quality attributes. Innovative Food Science and Emerging Technologies, 2020, 59, 102252.	5.6	39
36	Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biology and Technology, 2017, 132, 195-201.	6.0	37

#	Article	IF	CITATIONS
37	Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food and Function, 2018, 9, 2282-2289.	4.6	33
38	Application of innovative technologies, moderate-intensity pulsed electric fields and high-pressure thermal treatment, to preserve and/or improve the bioactive compounds content of pumpkin. Innovative Food Science and Emerging Technologies, 2018, 45, 53-61.	5.6	32
39	Enhancing hydroxycinnamic acids and flavan-3-ol contents by pulsed electric fields without affecting quality attributes of apple. Food Research International, 2019, 121, 433-440.	6.2	31
40	Natural Antioxidants Preserve the Lipid Oxidative Stability of Minimally Processed Avocado Purée. Journal of Food Science, 2005, 70, S325.	3.1	28
41	Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. Journal of Functional Foods, 2019, 59, 206-214.	3.4	28
42	Internal atmosphere, quality attributes and sensory evaluation of MAP packaged freshâ€eut Conference pears. International Journal of Food Science and Technology, 2007, 42, 208-213.	2.7	25
43	Effects of Pulsed Electric Fields Processing Strategies on Health-Related Compounds of Plant-Based Foods. Food Engineering Reviews, 2017, 9, 213-225.	5.9	25
44	Effects of High-Intensity Pulsed Electric Fields Processing Parameters on the Chlorophyll Content and Its Degradation Compounds in Broccoli Juice. Food and Bioprocess Technology, 2014, 7, 1137-1148.	4.7	23
45	Effect of pulsed electric fields on carotenoid and phenolic bioaccessibility and their relationship with carrot structure. Food and Function, 2021, 12, 2772-2783.	4.6	22
46	Enhancing carotenoid and phenolic contents in plant food matrices by applying non-thermal technologies: Bioproduction vs improved extractability. Trends in Food Science and Technology, 2021, 112, 622-630.	15.1	22
47	Effect of combined methods of preservation on the naturally occurring microflora of avocado purée. Food Control, 2004, 15, 11-17.	5.5	21
48	Novel Processing Technologies as Compared to Thermal Treatment on the Bioaccessibility and Caco-2 Cell Uptake of Carotenoids from Tomato and Kale-Based Juices. Journal of Agricultural and Food Chemistry, 2019, 67, 10185-10194.	5.2	19
49	Pulsed electric field treatment strategies to increase bioaccessibility of phenolic and carotenoid compounds in oil-added carrot purees. Food Chemistry, 2021, 364, 130377.	8.2	19
50	Food Safety Aspects of Pulsed Electric Fields. , 2005, , 183-217.		18
51	Changes of carotenoid content in carrots after application of pulsed electric field treatments. LWT - Food Science and Technology, 2021, 147, 111408.	5.2	18
52	Recent Advances toward the Application of Non-Thermal Technologies in Food Processing: An Insight on the Bioaccessibility of Health-Related Constituents in Plant-Based Products. Foods, 2021, 10, 1538.	4.3	18
53	Oxidative rancidity in avocado purée as affected by α-tocopherol, sorbic acid and storage atmosphere. European Food Research and Technology, 2007, 226, 295-300.	3.3	17
54	<i>In Vitro</i> Bioaccessibility of Colored Carotenoids in Tomato Derivatives as Affected by Ripeness Stage and the Addition of Different Types of Oil. Journal of Food Science, 2018, 83, 1404-1411.	3.1	16

#	Article	IF	CITATIONS
55	Induced accumulation of individual carotenoids and quality changes in tomato fruits treated with pulsed electric fields and stored at different post-treatments temperatures. Postharvest Biology and Technology, 2018, 146, 117-123.	6.0	16
56	In vitro bioaccessibility of isoflavones from a soymilk-based beverage as affected by thermal and non-thermal processing. Innovative Food Science and Emerging Technologies, 2020, 66, 102504.	5.6	16
57	High-intensity pulsed electric fields or thermal treatment of broccoli juice: the effects of processing on minerals and free amino acids. European Food Research and Technology, 2020, 246, 539-548.	3.3	13
58	Enzymatic Inactivation by Pulsed Electric Fields. , 2005, , 155-181.		12
59	Impact of critical highâ€intensity pulsed electric field processing parameters on oxidative enzymes and color of broccoli juice. Journal of Food Processing and Preservation, 2020, 44, e14362.	2.0	12
60	Quality Changes in Mango Juice Treated by High-Intensity Pulsed Electric Fields Throughout the Storage. Food and Bioprocess Technology, 2017, 10, 1970-1983.	4.7	11
61	Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum. Food Science and Technology International, 2018, 24, 145-160.	2.2	11
62	Applying Pulsed Electric Fields to Whole Carrots Enhances the Bioaccessibility of Carotenoid and Phenolic Compounds in Derived Products. Foods, 2021, 10, 1321.	4.3	10
63	Gastric and small intestinal lipid digestion kinetics as affected by the gradual addition of lipases and bile salts. Food Bioscience, 2022, 46, 101595.	4.4	10
64	Modeling within the Bayesian framework, the inactivation of pectinesterase in gazpacho by pulsed electric fields. Journal of Food Engineering, 2009, 95, 446-452.	5.2	9
65	Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure) Tj ETQq1 1 0.784 crossover study in healthy individuals. Food Chemistry, 2022, 371, 130821.	1314 rgBT 8.2	/Overlock 10 9
66	Impact of High-Intensity Pulsed Electric Fields on Bioactive Compounds in Mediterranean Plant-based Foods. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	6
67	Enzymatic Inactivation by Pulsed Electric Fields. , 2014, , 155-168.		6
68	Non-thermal Processing Technologies. , 2014, , 443-465.		6
69	Pulsed Electric Field Processing of Fluid Foods. , 2012, , 63-108.		4
70	Juice preservation by pulsed electric fields. Stewart Postharvest Review, 0, 8, 1-4.	0.7	4
71	Pulsed Electric Fields to Obtain Safe and Healthy Shelf-Stable Liquid Foods. NATO Science for Peace and Security Series A: Chemistry and Biology, 2011, , 205-222.	0.5	3
72	Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods. Natural Product Communications, 2009, 4, 741-6.	0.5	3

#	Article	IF	CITATIONS
73	Food Safety Aspects of Pulsed Electric Fields. , 2014, , 169-178.		2
74	Effect of antioxidants and proteins on the quality of Israeli Jaffa red and blond grapefruits. European Food Research and Technology, 2005, 221, 119-124.	3.3	1
75	Impact of pulsed electric fields on food enzymes and shelf-life. , 2007, , 212-246.		1
76	Emerging Nonthermal Technologies in Fruit Juice Processing. Contemporary Food Engineering, 2014, , 217-236.	0.2	1
77	High-Intensity Pulsed Electric Field Applications in Fruit Processing. Contemporary Food Engineering, 2012, , 149-184.	0.2	0
78	Pulsed Electric Fields Bioproduction of Secondary Metabolites in Plant Systems. , 2016, , 1-12.		0
79	Pulsed Electric Fields Bioproduction of Secondary Metabolites in Plant Systems. , 2017, , 2193-2204.		0