Kikuo Komori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/276126/publications.pdf Version: 2024-02-01

KIKUO KOMORI

#	Article	IF	CITATIONS
1	In vitro enzymatic electrochemical monitoring of glucose metabolism and production in rat primary hepatocytes on highly O2 permeable plates. Bioelectrochemistry, 2022, 143, 107972.	4.6	1
2	Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system. Scientific Reports, 2021, 11, 5437.	3.3	18
3	Bioelectrochemical detection of histamine release from basophilic leukemia cell line based on histamine dehydrogenase-modified cup-stacked carbon nanofibers. Bioelectrochemistry, 2021, 138, 107719.	4.6	4
4	Application of a Thin-Film Transistor Array for Cellular-Resolution Electrophysiology and Electrochemistry. IEEE Transactions on Electron Devices, 2021, 68, 2041-2048.	3.0	4
5	Toward the development of a label-free multiple immunosensor based on thin film transistor microelectrode arrays. Journal of Micromechanics and Microengineering, 2021, 31, 115002.	2.6	3
6	Biodegradable and hollowed micro-scaffolds for improved modular assembly-based tissue engineering: Design, 3D fabrication, and feasibility in randomly packed perfusion culture. Biochemical Engineering Journal, 2019, 149, 107239.	3.6	4
7	Toward the Development of In Vitro Bioassay Systems Integrated with Electrochemical Biosensors. , 2018, , .		0
8	Integration of an oxygen sensor into a polydymethylsiloxane hepatic culture device for two-dimensional gradient characterization. Sensors and Actuators B: Chemical, 2018, 273, 1062-1069.	7.8	12
9	Graphene–Polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochimica Acta, 2017, 233, 44-51.	5.2	125
10	Controlled direct electron transfer kinetics of fructose dehydrogenase at cup-stacked carbon nanofibers. Physical Chemistry Chemical Physics, 2017, 19, 27795-27800.	2.8	17
11	Enhanced self-organization of size-controlled hepatocyte aggregates on oxygen permeable honeycomb microwell sheets. Biomedical Physics and Engineering Express, 2017, 3, 045016.	1.2	7
12	Amperometric pH Sensor Based on Graphene–Polyaniline Composite. IEEE Sensors Journal, 2017, 17, 5038-5043.	4.7	34
13	Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase. Bioelectrochemistry, 2016, 111, 57-61.	4.6	16
14	Oxygenated Cup-Stacked Carbon Nanofibers/TiO2 Composite Films with Enhanced Photocatalytic Currents. Bulletin of the Chemical Society of Japan, 2016, 89, 603-607.	3.2	3
15	Novel integrative methodology for engineering large liver tissue equivalents based on three-dimensional scaffold fabrication and cellular aggregate assembly. Biofabrication, 2016, 8, 035016.	7.1	14
16	Direct Electron Transfer Kinetics of Peroxidase at Edge Plane Sites of Cup-Stacked Carbon Nanofibers and Their Comparison with Single-Walled Carbon Nanotubes. Langmuir, 2016, 32, 9163-9170.	3.5	24
17	Bioelectrochemistry of Heme Peptide at Seamless Three-Dimensional Carbon Nanotubes/Graphene Hybrid Films for Highly Sensitive Electrochemical Biosensing. ACS Applied Materials & Interfaces, 2015, 7, 3647-3654.	8.0	39
18	New physiologically-relevant liver tissue model based on hierarchically cocultured primary rat hepatocytes with liver endothelial cells. Integrative Biology (United Kingdom), 2015, 7, 1412-1422.	1.3	28

KIKUO KOMORI

#	Article	IF	CITATIONS
19	Electrochemically Functionalized Seamless Three-Dimensional Graphene-Carbon Nanotube Hybrid for Direct Electron Transfer of Glucose Oxidase and Bioelectrocatalysis. Langmuir, 2015, 31, 13054-13061.	3.5	61
20	Combination of microwell structures and direct oxygenation enables efficient and sizeâ€regulated aggregate formation of an insulinâ€secreting pancreatic βâ€cell line. Biotechnology Progress, 2014, 30, 178-187.	2.6	41
21	Oxygen-permeable membrane-based direct oxygenation remarkably enhances functions and gene expressions of rat hepatocytes in both 3D and sandwich cultures. Biochemical Engineering Journal, 2014, 91, 99-109.	3.6	9
22	Electrochemical properties of oxygenated cup-stacked carbon nanofiber-modified electrodes. Physical Chemistry Chemical Physics, 2014, 16, 12209-12213.	2.8	14
23	The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gasâ€permeable membranes. Biotechnology Progress, 2014, 30, 1401-1410.	2.6	27
24	Formation and harvesting of thick pancreatic β-cell sheets on a highly O2-permeable plate modified with poly(N-isopropylacrylamide). Biomaterials Science, 2013, 1, 510.	5.4	12
25	Peroxidase-modified cup-stacked carbon nanofiber networks for electrochemical biosensing with adjustable dynamic range. RSC Advances, 2012, 2, 1444-1449.	3.6	23
26	Direct Synthesis of Cup-Stacked Carbon Nanofiber Microspheres by the Catalytic Pyrolysis of Poly(ethylene glycol). Langmuir, 2012, 28, 8760-8766.	3.5	11
27	Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres. Biofabrication, 2012, 4, 045004.	7.1	21
28	Development of a well-of-the-well system-based embryo culture plate with an oxygen sensing photoluminescent probe. Sensors and Actuators B: Chemical, 2012, 162, 278-283.	7.8	8
29	Phthalocyanine-based fluorescence probes for detecting ascorbic acid: phthalocyaninatosilicon covalently linked to TEMPO radicals. Chemical Communications, 2011, 47, 4932.	4.1	59
30	Cytotoxicity evaluation of reactive metabolites using rat liver homogenate microsome-encapsulated alginate gel microbeads. Journal of Bioscience and Bioengineering, 2011, 111, 454-458.	2.2	2
31	Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Analytica Chimica Acta, 2010, 670, 57-62.	5.4	124
32	Simultaneous evaluation of toxicities using a mammalian cell array chip prepared by photocatalytic lithography. Analytica Chimica Acta, 2009, 653, 222-227.	5.4	7
33	A rapid and simple evaluation system for gas toxicity using luminous bacteria entrapped by a polyion complex membrane. Chemosphere, 2009, 77, 1106-1112.	8.2	9
34	A micropatterned cell array with an integrated oxygen -sensitive fluorescent membrane. Photochemical and Photobiological Sciences, 2009, 8, 1529-1533.	2.9	11
35	Initial Characterization of a Fibroblast-loaded Porous Elastin Film Reconstituted by a Novel Crosslinker, Dode-DSP. Chemistry Letters, 2009, 38, 878-879.	1.3	0
36	Enhanced maintenance and functions of rat hepatocytes induced by combination of on-site oxygenation and coculture with fibroblasts. Journal of Biotechnology, 2008, 133, 253-260.	3.8	58

IF # ARTICLE CITATIONS Development of an in vitro Batch-type Closed Gas Exposure Device with an Alveolar Epithelial Cell Line, A549, for Toxicity Evaluations of Gaseous Compounds. Analytical Sciences, 2008, 24, 957-962. Development of a disposable multi-compartment micro-cell culture device., 2007, , . 38 0 Electrochemiluminescence of Ru(II) Complexes Immobilized on a Magnetic Microbead Surface:Â Distribution of Magnetic Microbeads on the Electrode Surface and Effect of Azide Ion. Langmuir, 2007, 3.5 23, 6446-6452. Electrodes Modified with the Phase Transition Polymer and Heme Peptide: Â Biocatalysis and Biosensing 40 3.5 12 with Tunable Activity and Dynamic Range. Langmuir, 2006, 22, 478-483. Towards the development of a multi-compartment micro-cell culture device., 2006,,. Toward Selectivity Control of a Heme Peptide Electrode by Modification with a Phase-Transition Polymer. Analytical Sciences, 2005, 21, 351-353. 42 1.6 5 Control of heme peptide activity by using phase transition polymers modified with inhibitors. Bioelectrochemistry, 2005, 65, 129-134. 4.6 Peroxidase model electrodes: Self-mediation of heme peptide multilayer-modified electrodes and its application to biosensing with adjustable dynamic range. Journal of Electroanalytical Chemistry, 2005, 44 3.8 14 585, 89-96. Activity regulation of tyrosinase by using photoisomerizable inhibitors. Journal of Biotechnology, 2004, 108, 11-16. 3.8 Interference-Based Electrochemical Biosensor for the Measurement of the Concentration and Isomer 46 6.5 7 Ratio of Urocanic Acid. Analytical Chemistry, 2002, 74, 5154-5156. Disposable test plates with tyrosinase and Î²-glucosidases for cyanide and cyanogenic glycosides. 5.4 Analytica Chimica Acta, 2000, 408, 233-240.

KIKUO KOMORI