Kate E Lines

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761065/publications.pdf

Version: 2024-02-01

31	521	13 h-index	22
papers	citations		g-index
32	32	32	794
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Bartter-Gitelman Spectrum: 50-Year Follow-up With Revision of Diagnosis After Whole-Genome Sequencing. Journal of the Endocrine Society, 2022, 6, .	0.1	7
2	miR-3156-5p is downregulated in serum of MEN1 patients and regulates expression of MORF4L2. Endocrine-Related Cancer, 2022, 29, 557-568.	1.6	5
3	Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocrine Reviews, 2021, 42, 133-170.	8.9	85
4	CTNNB1-Mutant Aldosterone-Producing Adenomas With Somatic Mutations of GNA11/GNAQ Have Distinct Phenotype and Genotype. Journal of the Endocrine Society, 2021, 5, A65-A66.	0.1	0
5	Multiple endocrine neoplasia type 1 in children and adolescents: Clinical features and treatment outcomes. Surgery, $2021, , .$	1.0	10
6	PTH Infusion for Seizures in Autosomal Dominant Hypocalcemia Type 1. New England Journal of Medicine, 2021, 385, 189-191.	13.9	11
7	Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nature Genetics, 2021, 53, 1360-1372.	9.4	37
8	The bromodomain inhibitor JQ1+ reduces calcium-sensing receptor activity in pituitary cell lines. Journal of Molecular Endocrinology, 2021, 67, 83-94.	1.1	1
9	Activating Mutations of the G-protein Subunit α 11 Interdomain Interface Cause Autosomal Dominant Hypocalcemia Type 2. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 952-963.	1.8	6
10	Whole genome sequence analysis identifies a PAX2 mutation to establish a correct diagnosis for a syndromic form of hyperuricemia. American Journal of Medical Genetics, Part A, 2020, 182, 2521-2528.	0.7	3
11	Clinical MEN-1 Among a Large Cohort of Patients With Acromegaly. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2271-e2281.	1.8	19
12	Multiple Endocrine Neoplasia Type 1 (MEN1) 5′UTR Deletion, in MEN1 Family, Decreases Menin Expression. Journal of Bone and Mineral Research, 2020, 36, 100-109.	3.1	10
13	Multiple Endocrine Neoplasia Type 1 (MEN1) Phenocopy Due to a Cell Cycle Division 73 (<i>CDC73</i> Variant. Journal of the Endocrine Society, 2020, 4, bvaa142.	0.1	5
14	Effects of epigenetic pathway inhibitors on corticotroph tumour AtT20 cells. Endocrine-Related Cancer, 2020, 27, 163-174.	1.6	5
15	Preclinical drug studies in MEN1-related neuroendocrine neoplasms (MEN1-NENs). Endocrine-Related Cancer, 2020, 27, R345-R355.	1.6	5
16	Genetic background influences tumour development in heterozygous Men1 knockout mice. Endocrine Connections, 2020, 9, 426-437.	0.8	5
17	Two Synchronous Pituitary Adenomas Causing Cushing Disease and Acromegaly. AACE Clinical Case Reports, 2019, 5, e276-e281.	0.4	1
18	Epigenetic dysregulation in pituitary tumors. International Journal of Endocrine Oncology, 2019, 6, IJE19.	0.4	3

KATE E LINES

#	Article	lF	CITATION
19	Association of prolactin receptor (<i>PRLR</i>) variants with prolactinomas. Human Molecular Genetics, 2019, 28, 1023-1037.	1.4	24
20	MON-335 Phenocopy of Multiple Endocrine Neoplasia Type 1 (MEN1) Due to a Germline Cell Division Cycle 73 (CDC73) Variant. Journal of the Endocrine Society, 2019, 3, .	0.1	1
21	miR-15a/miR-16-1 expression inversely correlates with cyclin D1 levels in Men1 pituitary NETs. Journal of Endocrinology, 2019, 240, 41-50.	1.2	12
22	Current and emerging therapies for PNETs in patients with or without MEN1. Nature Reviews Endocrinology, 2018, 14, 216-227.	4.3	46
23	Molecular Genetic Studies of Pancreatic Neuroendocrine Tumors. Endocrinology and Metabolism Clinics of North America, 2018, 47, 525-548.	1.2	17
24	A MEN1 pancreatic neuroendocrine tumour mouse model under temporal control. Endocrine Connections, 2017, 6, 232-242.	0.8	17
25	Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome. Oncogene, 2017, 36, 4025-4036.	2.6	28
26	miR-135b- and miR-146b-dependent silencing of calcium-sensing receptor expression in colorectal tumors. International Journal of Cancer, 2016, 138, 137-145.	2.3	32
27	Pasireotide Therapy of Multiple Endocrine Neoplasia Type 1–Associated Neuroendocrine Tumors in Female Mice Deleted for an Men1 Allele Improves Survival and Reduces Tumor Progression. Endocrinology, 2016, 157, 1789-1798.	1.4	26
28	Animal models of pituitary neoplasia. Molecular and Cellular Endocrinology, 2016, 421, 68-81.	1.6	20
29	Molecular genetic advances in pituitary tumor development. Expert Review of Endocrinology and Metabolism, 2015, 10, 35-53.	1.2	5
30	S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells. Clinical and Experimental Metastasis, 2013, 30, 251-264.	1.7	41
31	S100P-Binding Protein, S100PBP, Mediates Adhesion through Regulation of Cathepsin Z in Pancreatic	1.9	34