Taek Soon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2760766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic engineering strategies for sesquiterpene production in microorganism. Critical Reviews in Biotechnology, 2022, 42, 73-92.	9.0	24
2	Applications of targeted proteomics in metabolic engineering: advances and opportunities. Current Opinion in Biotechnology, 2022, 75, 102709.	6.6	6
3	Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450. Metabolic Engineering, 2021, 64, 41-51.	7.0	33
4	Engineering Saccharomyces cerevisiae for isoprenol production. Metabolic Engineering, 2021, 64, 154-166.	7.0	34
5	Microbial production of advanced biofuels. Nature Reviews Microbiology, 2021, 19, 701-715.	28.6	126
6	Production Cost and Carbon Footprint of Biomass-Derived Dimethylcyclooctane as a High-Performance Jet Fuel Blendstock. ACS Sustainable Chemistry and Engineering, 2021, 9, 11872-11882.	6.7	21
7	Diversifying Isoprenoid Platforms via Atypical Carbon Substrates and Non-model Microorganisms. Frontiers in Microbiology, 2021, 12, 791089.	3.5	6
8	An automated workflow to screen alkene reductases using high-throughput thin layer chromatography. Biotechnology for Biofuels, 2020, 13, 184.	6.2	2
9	Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks. Microbial Cell Factories, 2020, 19, 208.	4.0	18
10	Adenosine Triphosphate and Carbon Efficient Route to Second Generation Biofuel Isopentanol. ACS Synthetic Biology, 2020, 9, 468-474.	3.8	9
11	Greenhouse Gas Footprint, Water-Intensity, and Production Cost of Bio-Based Isopentenol as a Renewable Transportation Fuel. ACS Sustainable Chemistry and Engineering, 2019, 7, 15434-15444.	6.7	16
12	Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli. Metabolic Engineering, 2019, 56, 85-96.	7.0	46
13	Redirecting Metabolic Flux <i>via</i> Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 391-402.	3.8	71
14	NaCl enhances Escherichia coli growth and isoprenol production in the presence of imidazolium-based ionic liquids. Bioresource Technology Reports, 2019, 6, 1-5.	2.7	8
15	Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks. Energy and Environmental Science, 2019, 12, 807-824.	30.8	109
16	Tolerance Characterization and Isoprenol Production of Adapted <i>Escherichia coli</i> in the Presence of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 1457-1463.	6.7	10
17	Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metabolic Engineering, 2018, 47, 60-72.	7.0	106
18	Dimethyl Sulfoxide Assisted Ionic Liquid Pretreatment of Switchgrass for Isoprenol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 4354-4361.	6.7	32

TAEK SOON LEE

#	Article	IF	CITATIONS
19	Toward industrial production of isoprenoids in <i>Escherichia coli</i> : Lessons learned from CRISPR as9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnology and Bioengineering, 2018, 115, 1000-1013.	3.3	39
20	Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization. Biotechnology Journal, 2018, 13, 1600433.	3.5	26
21	Discovery of novel geranylgeranyl reductases and characterization of their substrate promiscuity. Biotechnology for Biofuels, 2018, 11, 340.	6.2	17
22	Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. Biotechnology for Biofuels, 2018, 11, 285.	6.2	43
23	Parallel Integration and Chromosomal Expansion of Metabolic Pathways. ACS Synthetic Biology, 2018, 7, 2566-2576.	3.8	5
24	High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metabolic Engineering, 2017, 41, 125-134.	7.0	38
25	Production of jet fuel precursor monoterpenoids from engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2017, 114, 1703-1712.	3.3	81
26	Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metabolic Engineering, 2017, 44, 325-336.	7.0	78
27	Advanced Biodiesel and Biojet Fuels from Lignocellulosic Biomass. , 2017, , 1-25.		0
28	Advanced Biodiesel and Biojet Fuels from Lignocellulosic Biomass. , 2017, , 109-132.		2
29	Secondary Metabolism for Isoprenoid-based Biofuels. , 2016, , 35-71.		7
30	Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility. Frontiers in Bioengineering and Biotechnology, 2016, 4, 58.	4.1	8
31	Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnology for Biofuels, 2016, 9, 202.	6.2	75
32	Switchable ionic liquids based on di-carboxylic acids for one-pot conversion of biomass to an advanced biofuel. Green Chemistry, 2016, 18, 4012-4021.	9.0	31
33	Characterizing Strain Variation in Engineered E.Âcoli Using a Multi-Omics-Based Workflow. Cell Systems, 2016, 2, 335-346.	6.2	73
34	Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin. Plant and Cell Physiology, 2016, 57, 568-579.	3.1	78
35	Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metabolic Engineering, 2016, 34, 25-35.	7.0	97
36	Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae. PLoS ONE, 2016, 11, e0146983.	2.5	33

TAEK SOON LEE

#	Article	IF	CITATIONS
37	Converting Sugars to Biofuels: Ethanol and Beyond. Bioengineering, 2015, 2, 184-203.	3.5	55
38	Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metabolic Engineering, 2015, 28, 123-133.	7.0	140
39	Isoprenoid Drugs, Biofuels, and Chemicals—Artemisinin, Farnesene, and Beyond. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 355-389.	1.1	113
40	Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Scientific Reports, 2015, 5, 11128.	3.3	125
41	Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Natural Product Reports, 2015, 32, 1508-1526.	10.3	131
42	Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks. Bioenergy Research, 2015, 8, 1004-1013.	3.9	40
43	Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC. Applied and Environmental Microbiology, 2015, 81, 4690-4696.	3.1	65
44	Precursor-Directed Combinatorial Biosynthesis of Cinnamoyl, Dihydrocinnamoyl, and Benzoyl Anthranilates in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0138972.	2.5	14
45	An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nature Communications, 2014, 5, 3490.	12.8	85
46	Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering. MBio, 2014, 5, e01932.	4.1	113
47	Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnology and Bioengineering, 2014, 111, 1648-1658.	3.3	89
48	Photoionization Mass Spectrometric Measurements of Initial Reaction Pathways in Low-Temperature Oxidation of 2,5-Dimethylhexane. Journal of Physical Chemistry A, 2014, 118, 10188-10200.	2.5	19
49	Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metabolic Engineering, 2014, 26, 67-76.	7.0	53
50	Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Applied Microbiology and Biotechnology, 2014, 98, 5991-6002.	3.6	58
51	Investigation of biofuels from microorganism metabolism for use as anti-knock additives. Fuel, 2014, 117, 939-943.	6.4	36
52	Application of targeted proteomics and biological parts assembly in E. coli to optimize the biosynthesis of an anti-malarial drug precursor, amorpha-4,11-diene. Chemical Engineering Science, 2013, 103, 21-28.	3.8	14
53	Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metabolic Engineering, 2013, 19, 33-41.	7.0	343
54	Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013, 31, 1039-1046.	17.5	411

TAEK SOON LEE

#	Article	IF	CITATIONS
55	Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metabolic Engineering, 2013, 15, 174-183.	7.0	157
56	HipA-Triggered Growth Arrest and Â-Lactam Tolerance in Escherichia coli Are Mediated by RelA-Dependent ppGpp Synthesis. Journal of Bacteriology, 2013, 195, 3173-3182.	2.2	84
57	Engineering of Ralstonia eutropha H16 for Autotrophic and Heterotrophic Production of Methyl Ketones. Applied and Environmental Microbiology, 2013, 79, 4433-4439.	3.1	139
58	Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metabolic Engineering, 2012, 14, 603-610.	7.0	74
59	Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550) Tj ETQq1 1 0.	784314 rg 2.8	BT/Overlock
60	Engineering of a Tyrosol-Producing Pathway, Utilizing Simple Sugar and the Central Metabolic Tyrosine, in Escherichia coli. Journal of Agricultural and Food Chemistry, 2012, 60, 979-984.	5.2	49
61	Encoding substrates with mass tags to resolve stereospecific reactions using Nimzyme. Rapid Communications in Mass Spectrometry, 2012, 26, 611-615.	1.5	20
62	A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLoS ONE, 2012, 7, e37010.	2.5	98
63	Engineering microbial biofuel tolerance and export using efflux pumps. Molecular Systems Biology, 2011, 7, 487.	7.2	440
64	Identification and microbial production of a terpene-based advanced biofuel. Nature Communications, 2011, 2, 483.	12.8	516
65	Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metabolic Engineering, 2011, 13, 588-597.	7.0	141
66	Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19949-19954.	7.1	333
67	BglBrick vectors and datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering, 2011, 5, 12.	4.7	391
68	Targeted proteomics for metabolic pathway optimization: Application to terpene production. Metabolic Engineering, 2011, 13, 194-203.	7.0	169
69	Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 2008, 19, 556-563.	6.6	535
70	Biofuel alternatives to ethanol: pumping the microbial well. Trends in Biotechnology, 2008, 26, 375-381.	9.3	338
71	Structure–activity relationships of semisynthetic mumbaistatin analogs. Bioorganic and Medicinal Chemistry, 2007, 15, 5207-5218.	3.0	15
72	Orthogonal Protein Interactions in Spore Pigment Producing and Antibiotic Producing Polyketide Synthases. Journal of Antibiotics, 2005, 58, 663-666.	2.0	8

#	Article	IF	CITATIONS
73	Engineered Biosynthesis of Aklanonic Acid Analogues. Journal of the American Chemical Society, 2005, 127, 12254-12262.	13.7	36
74	Exploring the biosynthetic potential of bimodular aromatic polyketide synthases. Tetrahedron, 2004, 60, 7659-7671.	1.9	14
75	Self-Assembly of a Molecular Floral Lace with One-Dimensional Channels and Inclusion of Glucose. Angewandte Chemie - International Edition, 1999, 38, 1405-1408.	13.8	207