Vikash Gajraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2760748/publications.pdf

Version: 2024-02-01

	1163117		1125743	
15	186	8	13	
papers	citations	h-index	g-index	
15	15	15	139	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Novel compositions of mesoporous spinel-type ternary metal oxides microspheres: Structural and electrical properties functionality. Physica B: Condensed Matter, 2022, 630, 413679.	2.7	9
2	Silver, Copper, Magnesium and Zinc Contained Electroactive Mesoporous Bioactive S53P4 Glass–Ceramics Nanoparticle for Bone Regeneration: Bioactivity, Biocompatibility and Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2309-2321.	3.7	3
3	Designing Novel Co ₂ FeV ₂ O ₈ Microsticks with Prompted Multiple Electrochemical Performances for an Asymmetric Solid-State Supercapacitor and the Hydrogen Evolution Reaction. Energy & Energy & Energy & Evolution Reaction. Energy & Evolution Reaction.	5.1	4
4	Preparation of spinel structured MnCo ₂ O ₄ microspheres for energy storage devices. Ferroelectrics, 2022, 588, 55-64.	0.6	2
5	Fabrication of Nanocluster-Aggregated Dense Ce ₂ (MoO ₄) ₃ Microspherical Architectures for High-Voltage Energy Storage and High Catalytic Energy Conversion Applications. Energy & Description Applications. Energy & Description Applications.	5.1	3
6	Synthesis and supercapacitive behaviour of SnO2/r-GO nanocomposite. Synthetic Metals, 2022, 289, 117132.	3.9	18
7	CuWO4: A promising multifunctional electrode material for energy storage as in redox active solid-state asymmetric supercapacitor and an electrocatalyst for energy conversion in methanol electro-oxidation. Journal of Electroanalytical Chemistry, 2021, 895, 115504.	3.8	18
8	Correlation between structural, electrical and electrochemical performance of Zn doped high voltage spinel LiNi0.5-xZnxMn1.5O4 porous microspheres as a cathode material for Li-lon batteries. Ceramics International, 2021, 47, 35275-35286.	4.8	12
9	Hybrid aqueous supercapacitors based on mesoporous spinel-analogous Zn-Ni-Co-O nanorods: Effect of Ni content on the structure and energy storage. Journal of Alloys and Compounds, 2021, 882, 160712.	5.5	10
10	Boosting the Multifunctional Properties of MnCo ₂ S ₄ Heterostructure for Portable Allâ€Solidâ€State Symmetric Supercapacitor, Methanol Oxidation and Hydrogen Evolution Reaction. ChemistrySelect, 2021, 6, 11466-11481.	1.5	11
11	Multifunctionality exploration of NiCo ₂ O ₄ â€"rGO nanocomposites: photochemical water oxidation, methanol electro-oxidation and asymmetric supercapacitor applications. Dalton Transactions, 2021, 50, 18001-18015.	3.3	8
12	Growth of LiNi0.5Mn1.5O4 crystals on reduced graphene oxide sheets for high energy and power density charge storage. Materials Research Bulletin, 2020, 124, 110742.	5.2	7
13	Electrochemical performances of asymmetric aqueous supercapacitor based on porous Cu3Mo2O9 petals and La2Mo3O12 nanoparticles fabricated through a simple co-precipitation method. Applied Surface Science, 2020, 512, 145648.	6.1	27
14	Synthesis and electrical impedance study of Li1+2xNi0.5Mn1.5-xZnxO4 (0 â‰ \$ €¯x â‰ \$ €¯0.3) for Li-ion batt application. Materials Today: Proceedings, 2020, 28, 2258-2262.	tery 1.8	O
15	Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2019, 845, 72-83.	3.8	54