Kazunori Hasegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2760684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Robust Testing Method for DC and AC Capacitors With Minimum Required Power Supply. IEEE Transactions on Power Electronics, 2022, 37, 4942-4946.	7.9	7
2	Condition Monitoring of a DC- Link Capacitor Used in a PWM Inverter With a Six-Pulse Diode Rectifier Without Current Sensors. , 2022, , .		2
3	Evaluation Techniques of Aluminum Electrolytic Capacitors for High-Frequency-Switching Power Converters. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 630-632.	0.0	0
4	A testing method for evaluating shoot-through immunity of IGBTs in an inverter. Microelectronics Reliability, 2021, 126, 114289.	1.7	1
5	Shoot-through protection for an inverter consisting of the next-generation IGBTs with gate impedance reduction. Microelectronics Reliability, 2020, 114, 113765.	1.7	4
6	Mutual inductance influence to switching speed and TDR measurements for separating self- and mutual inductances in the package. , 2019, , .		2
7	Output-Current Measurement of a PWM Inverter with a Tiny PCB Rogowski Sensor Integrated into an IGBT Module. , 2019, , .		10
8	DC-bias-voltage dependence of degradation of aluminum electrolytic capacitors. Microelectronics Reliability, 2018, 83, 115-118.	1.7	13
9	Calorimetric Power-Loss Measurement of a High-Power Film Capacitor with Actual Ripple Current Generated by a PWM Inverter. , 2018, , .		1
10	ESR and capacitance monitoring of a dc-link capacitor used in a three-phase PWM inverter with a front-end diode rectifier. Microelectronics Reliability, 2018, 88-90, 433-437.	1.7	16
11	Envelop tracking based embedded current measurement for monitoring of IGBT and power converter system. Microelectronics Reliability, 2018, 88-90, 500-504.	1.7	2
12	A New Output Current Measurement Method With Tiny PCB Sensors Capable of Being Embedded in an IGBT Module. IEEE Transactions on Power Electronics, 2017, 32, 1707-1712.	7.9	24
13	New power module integrating output current measurement function. , 2017, , .		3
14	Temperature rise measurement for power-loss comparison of an aluminum electrolytic capacitor between sinusoidal and square-wave current injections. Microelectronics Reliability, 2016, 64, 98-100.	1.7	7
15	A new evaluation circuit with a low-voltage inverter intended for capacitors used in a high-power three-phase inverter. , 2016, , .		5
16	Design and Analysis of a New Evaluation Circuit for Capacitors Used in a High-Power Three-Phase Inverter. IEEE Transactions on Industrial Electronics, 2016, 63, 2679-2687.	7.9	21
17	Short-circuit protection for an IGBT with detecting the gate voltage and gate charge. Microelectronics Reliability, 2014, 54, 1897-1900.	1.7	12