List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2760208/publications.pdf Version: 2024-02-01

AIREDT MAS

#	Article	lF	CITATIONS
1	Microbiological control of wine production. , 2022, , 239-258.		0
2	Strategies for microbiological control of the alcoholic fermentation in wines by exploiting the microbial terroir complexity: A mini-review. International Journal of Food Microbiology, 2022, 367, 109592.	2.1	12
3	Effect of a Multistarter Yeast Inoculum on Ethanol Reduction and Population Dynamics in Wine Fermentation. Foods, 2021, 10, 623.	1.9	11
4	Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants, 2021, 10, 1735.	2.2	7
5	Effect of transient thermal shocks on alcoholic fermentation performance. International Journal of Food Microbiology, 2020, 312, 108362.	2.1	4
6	Melatonin and glycolytic protein interactions are related to yeast fermentative capacity. Food Microbiology, 2020, 87, 103398.	2.1	6
7	High-Throughput Sequencing Approach to Analyze the Effect of Aging Time and Barrel Usage on the Microbial Community Composition of Red Wines. Frontiers in Microbiology, 2020, 11, 562560.	1.5	8
8	Viability-PCR Allows Monitoring Yeast Population Dynamics in Mixed Fermentations Including Viable but Non-Culturable Yeasts. Foods, 2020, 9, 1373.	1.9	9
9	Genetic and transcriptomic evidences suggest <i>ARO10</i> genes are involved in benzenoid biosynthesis by yeast. Yeast, 2020, 37, 427-435.	0.8	7
10	Transcriptomic Insights into the Effect of Melatonin in Saccharomyces cerevisiae in the Presence and Absence of Oxidative Stress. Antioxidants, 2020, 9, 947.	2.2	17
11	Qualitative Factor-Based Comparison of NMR, Targeted and Untargeted GC-MS and LC-MS on the Metabolomic Profiles of Rioja and Priorat Red Wines. Foods, 2020, 9, 1381.	1.9	6
12	A Rapid Method for Selecting Non-Saccharomyces Strains with a Low Ethanol Yield. Microorganisms, 2020, 8, 658.	1.6	28
13	Effect of Several Nutrients and Environmental Conditions on Intracellular Melatonin Synthesis in Saccharomyces cerevisiae. Microorganisms, 2020, 8, 853.	1.6	16
14	Nitrogen Preferences during Alcoholic Fermentation of Different Non-Saccharomyces Yeasts of Oenological Interest. Microorganisms, 2020, 8, 157.	1.6	61
15	Strawberry. , 2020, , 281-300.		0
16	Determination of melatonin by a whole cell bioassay in fermented beverages. Scientific Reports, 2019, 9, 9120.	1.6	6
17	Glycolytic Proteins Interact With Intracellular Melatonin in Saccharomyces cerevisiae. Frontiers in Microbiology, 2019, 10, 2424.	1.5	9
18	Evaluating the Effect of QIIME Balanced Default Parameters on Metataxonomic Analysis Workflows With a Mock Community. Frontiers in Microbiology, 2019, 10, 1084.	1.5	8

#	Article	IF	CITATIONS
19	Oenological attributes of the yeast <i>Hanseniaspora vineae</i> and its application for white and red winemaking. BIO Web of Conferences, 2019, 12, 02010.	0.1	7
20	Geographical Origin Has a Greater Impact on Grape Berry Fungal Community than Grape Variety and Maturation State. Microorganisms, 2019, 7, 669.	1.6	25
21	Genomic and Transcriptomic Basis of Hanseniaspora vineae's Impact on Flavor Diversity and Wine Quality. Applied and Environmental Microbiology, 2019, 85, .	1.4	51
22	The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Food Microbiology, 2019, 78, 143-154.	2.1	37
23	Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions. International Journal of Food Microbiology, 2019, 289, 174-181.	2.1	20
24	Advances in Enumeration and Identification of Vinegar Cultures. , 2019, , 39-54.		0
25	Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR. International Journal of Food Microbiology, 2018, 270, 1-4.	2.1	8
26	The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiology, 2018, 74, 64-74.	2.1	56
27	Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. International Journal of Food Microbiology, 2018, 281, 36-46.	2.1	34
28	Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species. Frontiers in Microbiology, 2018, 9, 670.	1.5	32
29	Massive Sequencing: A New Tool for the Control of Alcoholic Fermentation in Wine?. Fermentation, 2018, 4, 7.	1.4	10
30	Melatonin Minimizes the Impact of Oxidative Stress Induced by Hydrogen Peroxide in Saccharomyces and Non-conventional Yeast. Frontiers in Microbiology, 2018, 9, 1933.	1.5	24
31	Analysis of the NCR Mechanisms in Hanseniaspora vineae and Saccharomyces cerevisiae During Winemaking. Frontiers in Genetics, 2018, 9, 747.	1.1	22
32	Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2017, 7, 399-412.	0.8	31
33	Effect of chitosan and SO 2 on viability of Acetobacter strains in wine. International Journal of Food Microbiology, 2017, 246, 1-4.	2.1	35
34	The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2017, 258, 1-11.	2.1	15
35	Acetic Acid Bacteria. , 2017, , 43-64.		3
36	Effect of ammonium and amino acids on the growth of selected strains of Gluconobacter and Acetobacter. International Journal of Food Microbiology, 2017, 242, 45-52.	2.1	21

#	Article	IF	CITATIONS
37	Role of Mitochondrial Retrograde Pathway in Regulating Ethanol-Inducible Filamentous Growth in Yeast. Frontiers in Physiology, 2017, 8, 148.	1.3	17
38	Wine â~†. , 2017, , 598-598.		3
39	Melatonin Reduces Oxidative Stress Damage Induced by Hydrogen Peroxide in Saccharomyces cerevisiae. Frontiers in Microbiology, 2017, 8, 1066.	1.5	49
40	Sequential Inoculation of Native Non-Saccharomyces and Saccharomyces cerevisiae Strains for Wine Making. Frontiers in Microbiology, 2017, 8, 1293.	1.5	38
41	Vinegars and Other Fermented Condiments. , 2017, , 577-591.		9
42	Detrimental Effects of Acetic Acid Bacteria in Foods. , 2017, , 299-320.		0
43	Vinegar. , 2016, , 418-423.		6
44	Comparison of Fermentation and Wines Produced by Inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae. Frontiers in Microbiology, 2016, 7, 338.	1.5	91
45	The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific. Frontiers in Microbiology, 2016, 7, 502.	1.5	86
46	Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast. Frontiers in Microbiology, 2016, 7, 663.	1.5	57
47	Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations. Frontiers in Microbiology, 2016, 7, 930.	1.5	54
48	Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains. Frontiers in Microbiology, 2016, 7, 1358.	1.5	10
49	Editorial: Non-conventional Yeast in the Wine Industry. Frontiers in Microbiology, 2016, 7, 1494.	1.5	15
50	Saccharomyces and non-Saccharomyces Competition during Microvinification under Different Sugar and Nitrogen Conditions. Frontiers in Microbiology, 2016, 7, 1959.	1.5	35
51	Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by <i>Hanseniaspora vineae</i> strains. Yeast, 2016, 33, 323-328.	0.8	32
52	Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must. Genome Announcements, 2016, 4, .	0.8	3
53	Draft Genome Sequence of Acetobacter malorum CECT 7742, a Strain Isolated from Strawberry Vinegar. Genome Announcements, 2016, 4, .	0.8	0
54	<i>De Novo</i> Synthesis of Benzenoid Compounds by the Yeast <i>Hanseniaspora vineae</i> Increases the Flavor Diversity of Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 4574-4583.	2.4	46

#	Article	IF	CITATIONS
55	Taking Advantage of Natural Biodiversity for Wine Making: The WILDWINE Project. Agriculture and Agricultural Science Procedia, 2016, 8, 4-9.	0.6	15
56	Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high-throughput barcoding sequencing. LWT - Food Science and Technology, 2016, 72, 317-321.	2.5	107
57	Contribution of yeast and base wine supplementation to sparkling wine composition. Journal of the Science of Food and Agriculture, 2016, 96, 4962-4972.	1.7	20
58	Revalorization of strawberry surpluses by bio-transforming its glucose content into gluconic acid. Food and Bioproducts Processing, 2016, 99, 188-196.	1.8	9
59	GqqA, a novel protein in Komagataeibacter europaeus involved in bacterial quorum quenching and cellulose formation. Microbial Cell Factories, 2016, 15, 88.	1.9	15
60	Comparison of d-gluconic acid production in selected strains of acetic acid bacteria. International Journal of Food Microbiology, 2016, 222, 40-47.	2.1	32
61	An approach for estimating the maximum specific growth rate of Gluconobacter japonicus in strawberry purée without cell concentration data. Biochemical Engineering Journal, 2016, 105, 314-320.	1.8	7
62	Nitrogen modulation of yeast fitness and viability during sparkling wine production. Food Microbiology, 2016, 54, 106-114.	2.1	24
63	Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE. Frontiers in Microbiology, 2015, 6, 1156.	1.5	104
64	Changes on free amino acids during the alcoholic fermentation of strawberry and persimmon. International Journal of Food Science and Technology, 2015, 50, 48-54.	1.3	4
65	Preparation of a pure inoculum of acetic acid bacteria for the selective conversion of glucose in strawberry purée into gluconic acid. Food and Bioproducts Processing, 2015, 96, 35-42.	1.8	16
66	The yeast <i>Starmerella bacillaris</i> (synonym <i>Candida zemplinina</i>) shows high genetic diversity in winemaking environments. FEMS Yeast Research, 2015, 15, fov045.	1.1	70
67	Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation. International Journal of Food Microbiology, 2015, 206, 67-74.	2.1	88
68	Viable and culturable populations of Saccharomyces cerevisiae , Hanseniaspora uvarum and Starmerella bacillaris (synonym Candida zemplinina) during Barbera must fermentation. Food Research International, 2015, 78, 195-200.	2.9	25
69	Draft Genome Sequence of Komagataeibacter europaeus CECT 8546, a Cellulose-Producing Strain of Vinegar Elaborated by the Traditional Method. Genome Announcements, 2015, 3, .	0.8	6
70	Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora) Tj ETQq0 0 0 wine production. European Food Research and Technology, 2015, 240, 999-1012.	rgBT /Ove 1.6	erlock 10 Tf 50 116
71	The effect of nitrogen addition on the fermentative performance during sparkling wine production. Food Research International, 2015, 67, 126-135.	2.9	32
72	Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Applied	1.7	35

Microbiology and Biotechnology, 2015, 99, 1349-1361.

#	Article	IF	CITATIONS
73	Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques. Food Microbiology, 2015, 46, 452-462.	2.1	34
74	Melatonin and Other Tryptophan Metabolites Produced by Yeasts: Implications in Cardiovascular and Neurodegenerative Diseases. Frontiers in Microbiology, 2015, 6, 1565.	1.5	25
75	Acetic Acid Bacteria and the Production and Quality of Wine Vinegar. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	93
76	Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation. BioMed Research International, 2014, 2014, 1-7.	0.9	61
77	Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym) Tj ETQq1 1 International Journal of Food Microbiology, 2014, 191, 1-9.	0.784314 2.1	rgBT /Over 43
78	Acetic acid bacteria isolated from grapes of South Australian vineyards. International Journal of Food Microbiology, 2014, 178, 98-106.	2.1	33
79	Analysis of acetic acid bacteria by different culture-independent techniques in a controlled superficial acetification. Annals of Microbiology, 2013, 63, 393-398.	1.1	4
80	Biomarkers for detecting nitrogen deficiency during alcoholic fermentation in different commercial wine yeast strains. Food Microbiology, 2013, 34, 227-237.	2.1	12
81	Acetobacter malorum and Acetobacter cerevisiae identification and quantification by Real-Time PCR with TaqMan-MGB probes. Food Microbiology, 2013, 36, 30-39.	2.1	19
82	Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiology, 2013, 34, 88-94.	2.1	56
83	Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Research International, 2013, 51, 404-411.	2.9	31
84	Acetobacter strains isolated during the acetification of blueberry (Vaccinium corymbosum L.) wine. Letters in Applied Microbiology, 2013, 57, 227-232.	1.0	15
85	Acetic acid bacteria in grape must. Acetic Acid Bacteria, 2013, 2, 4.	1.0	14
86	Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation. FEMS Yeast Research, 2012, 12, 831-843.	1.1	28
87	Effect of low temperature upon vitality of <i>Saccharomyces cerevisiae</i> phospholipid mutants. Yeast, 2012, 29, 443-452.	0.8	11
88	Effect of mixed culture fermentations on yeast populations and aroma profile. LWT - Food Science and Technology, 2012, 49, 8-13.	2.5	101
89	Resveratrol induces antioxidant defence via transcription factor Yap1p. Yeast, 2012, 29, 251-263.	0.8	33
90	Sip18 hydrophilin prevents yeast cell death during desiccation stress. Journal of Applied Microbiology, 2012, 112, 512-525.	1.4	38

#	Article	IF	CITATIONS
91	Identification of yeast and acetic acid bacteria isolated from the fermentation andÂacetification of persimmon (Diospyros kaki). Food Microbiology, 2012, 30, 98-104.	2.1	48
92	Production of melatonin by <i>Saccharomyces</i> strains under growth and fermentation conditions. Journal of Pineal Research, 2012, 53, 219-224.	3.4	82
93	Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Research, 2012, 12, 477-485.	1.1	65
94	Acetic Acid Bacteria. , 2011, , 227-255.		5
95	Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography–mass spectrometry method. Food Research International, 2011, 44, 259-268.	2.9	72
96	Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT - Food Science and Technology, 2011, 44, 1591-1596.	2.5	52
97	The stressâ€activated protein kinase Hog1 develops a critical role after resting state. Molecular Microbiology, 2011, 80, 423-435.	1.2	13
98	Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR. Food Microbiology, 2011, 28, 1483-1491.	2.1	37
99	Differentiation of acetic acid bacteria based on sequence analysis of 16S–23S rRNA gene internal transcribed spacer sequences. International Journal of Food Microbiology, 2011, 147, 217-222.	2.1	34
100	Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. International Journal of Food Microbiology, 2011, 151, 105-112.	2.1	31
101	Enhancing yeast cell viability after dehydration by modification of the lipid profile. World Journal of Microbiology and Biotechnology, 2011, 27, 75-83.	1.7	21
102	Effect of growth temperature on yeast lipid composition and alcoholic fermentation at low temperature. European Food Research and Technology, 2011, 232, 517-527.	1.6	60
103	Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. European Food Research and Technology, 2010, 231, 215-224.	1.6	135
104	Identification and quantification of acetic acid bacteria in wine and vinegar by TaqMan–MGB probes. Food Microbiology, 2010, 27, 257-265.	2.1	70
105	Population dynamics of acetic acid bacteria during traditional wine vinegar production. International Journal of Food Microbiology, 2010, 138, 130-136.	2.1	76
106	Effect of barrel design and the inoculation of Acetobacter pasteurianus in wine vinegar production. International Journal of Food Microbiology, 2010, 141, 56-62.	2.1	54
107	Determination of viable wine yeast using DNA binding dyes and quantitative PCR. International Journal of Food Microbiology, 2010, 144, 257-262.	2.1	94
108	Changes of volatile compounds in wine vinegars during their elaboration in barrels made from different woods. Food Chemistry, 2010, 120, 561-571.	4.2	46

#	Article	IF	CITATIONS
109	A new simplified AFLP method for wine yeast strain typing. LWT - Food Science and Technology, 2010, 43, 1480-1484.	2.5	20
110	Effect of fermentation temperature on microbial population evolution using culture-independent and dependent techniques. Food Research International, 2010, 43, 773-779.	2.9	64
111	Acetic Acid Bacteria. , 2009, , 31-46.		16
112	Effect of lipid supplementation upon Saccharomyces cerevisiae lipid composition and fermentation performance at low temperature. European Food Research and Technology, 2009, 228, 833-840.	1.6	47
113	Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions. Journal of Applied Microbiology, 2009, 106, 666-674.	1.4	18
114	The role of <i>GAP1</i> gene in the nitrogen metabolism of <i>Saccharomyces cerevisiae</i> during wine fermentation. Journal of Applied Microbiology, 2009, 107, 235-244.	1.4	24
115	Volatile compounds in red wine vinegars obtained by submerged and surface acetification in different woods. Food Chemistry, 2009, 113, 1252-1259.	4.2	59
116	Effect of wood type and thickness on acetification kinetics in traditional vinegar production. International Journal of Wine Research, 2009, , 155.	0.5	4
117	Effect of active dry wine yeast storage upon viability and lipid composition. World Journal of Microbiology and Biotechnology, 2008, 24, 2555-2563.	1.7	22
118	HPLC determination of amino acids with AQC derivatization in vinegars along submerged and surface acetifications and its relation to the microbiota. European Food Research and Technology, 2008, 227, 93-102.	1.6	38
119	Proteomic evolution of a wine yeast during the first hours of fermentation. FEMS Yeast Research, 2008, 8, 1137-1146.	1.1	51
120	Effect of oenological practices on microbial populations using culture-independent techniques. Food Microbiology, 2008, 25, 849-856.	2.1	109
121	Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. International Journal of Food Microbiology, 2008, 121, 169-177.	2.1	179
122	Application of culture culture-independent molecular biology based methods to evaluate acetic acid bacteria diversity during vinegar processing. International Journal of Food Microbiology, 2008, 126, 245-249.	2.1	42
123	Vitality enhancement of the rehydrated active dry wine yeast. International Journal of Food Microbiology, 2008, 126, 116-122.	2.1	49
124	Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods. International Journal of Food Microbiology, 2008, 128, 336-341.	2.1	48
125	Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation. FEMS Yeast Research, 2007, 7, 304-316.	1.1	47
126	Monitoring of <i>Saccharomyces</i> and <i>Hanseniaspora</i> populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Research, 2007, 7, 1340-1349.	1.1	64

#	Article	IF	CITATIONS
127	Enumeration and detection of acetic acid bacteria by real-time PCR and nested PCR. FEMS Microbiology Letters, 2007, 267, 129-129.	0.7	0
128	Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. International Journal of Food Microbiology, 2007, 115, 348-355.	2.1	32
129	Effect of low-temperature fermentation on yeast nitrogen metabolism. World Journal of Microbiology and Biotechnology, 2007, 23, 809-815.	1.7	58
130	Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine. Applied and Environmental Microbiology, 2006, 72, 7148-7155.	1.4	177
131	Enumeration and detection of acetic acid bacteria by real-time PCR and nested PCR. FEMS Microbiology Letters, 2006, 254, 123-128.	0.7	60
132	Diversity and evolution of non-Saccharomycesyeast populations during wine fermentation: effect of grape ripeness and cold maceration. FEMS Yeast Research, 2006, 6, 102-111.	1.1	80
133	Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Research, 2006, 6, 1167-1183.	1.1	109
134	Application of molecular methods for routine identification of acetic acid bacteria. International Journal of Food Microbiology, 2006, 108, 141-146.	2.1	50
135	Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. International Journal of Food Microbiology, 2005, 102, 295-304.	2.1	85
136	Influence of the Timing of Nitrogen Additions during Synthetic Grape Must Fermentations on Fermentation Kinetics and Nitrogen Consumption. Journal of Agricultural and Food Chemistry, 2005, 53, 996-1002.	2.4	168
137	Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. Journal of Applied Microbiology, 2004, 96, 853-860.	1.4	64
138	New PCR-based methods for yeast identification. Journal of Applied Microbiology, 2004, 97, 792-801.	1.4	50
139	Nitrogen catabolite repression in during wine fermentations. FEMS Yeast Research, 2004, 4, 625-632.	1.1	148
140	Effect of the nitrogen source on the fatty acid composition of Saccharomyces cerevisiae. Food Microbiology, 2003, 20, 255-258.	2.1	40
141	Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. International Journal of Food Microbiology, 2003, 80, 47-53.	2.1	262
142	Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. International Journal of Food Microbiology, 2003, 85, 127-136.	2.1	202
143	Effect of Organic Acids and Nitrogen Source on Alcoholic Fermentation:Â Study of Their Buffering Capacity. Journal of Agricultural and Food Chemistry, 2003, 51, 916-922.	2.4	61
144	Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Systematic and Applied Microbiology, 2002, 25, 287-293.	1.2	217

#	Article	lF	CITATIONS
145	Sealing and Storage Position Effects on Wine Evolution. Journal of Food Science, 2002, 67, 1374-1378.	1.5	50
146	Low Temperature Alcoholic Fermentations in High Sugar Concentration Grape Musts. Journal of Food Science, 2002, 67, 268-273.	1.5	44
147	Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek, 2001, 79, 345-352.	0.7	204
148	Eight cDNA encoding putative aquaporins in Vitis hybrid Richterâ€110 and their differential expression. Journal of Experimental Botany, 2001, 52, 1949-1951.	2.4	33
149	Identification of acetic acid bacteria by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA. Letters in Applied Microbiology, 2000, 31, 63-67.	1.0	34
150	Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Science, 2000, 160, 159-163.	1.7	105
151	Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 1981-1987.	0.8	125
152	Effects of Copper Exposure in Tissue CulturedVitisvinifera. Journal of Agricultural and Food Chemistry, 1999, 47, 2519-2522.	2.4	25
153	Molecular analysis of yeast population dynamics: Effect of sulphur dioxide and inoculum on must fermentation. International Journal of Food Microbiology, 1998, 41, 169-175.	2.1	67
154	Respiratory Toxicity of Copper. Environmental Health Perspectives, 1994, 102, 339.	2.8	3
155	Changes in Plasma Copper and Zinc during Rat Development. Neonatology, 1993, 64, 47-52.	0.9	9
156	Uptake of 67Cu by isolated human trophoblast cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 123-128.	1.9	38
157	Binding, uptake and efflux of 65Zn by isolated human trophoblast cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 35-38.	1.9	19
158	The Influence of Zinc-Binding Ligands in Fetal Circulation on Zinc Clearance Across the In Situ Perfused Guinea Pig Placenta. Journal of Nutrition, 1991, 121, 338-344.	1.3	19
159	Response to acute nickel toxicity in rats as a function of sex. Biology of Metals, 1991, 4, 136-140.	1.1	8
160	Cytosolic copper-binding proteins in rat and mouse hepatocytes incubated continuously with Cu(II). Biochemical Journal, 1990, 268, 359-366.	1.7	12
161	Nickel binding by isolated human trophoblast cells. Research Communications in Chemical Pathology and Pharmacology, 1990, 67, 271-8.	0.2	2
162	Role of glutathione in selenite binding by human plasma. Biological Trace Element Research, 1989, 20, 95-104.	1.9	9

#	Article	IF	CITATIONS
163	The metabolism of metals in rat placenta. Biological Trace Element Research, 1988, 18, 191-199.	1.9	18
164	Selenite metabolism in rat and human blood. Biological Trace Element Research, 1988, 15, 97-110.	1.9	9
165	Effects of a Nickel Load upon the Concentration of Plasma Metabolites in Pregnant Rats. Gynecologic and Obstetric Investigation, 1986, 21, 193-197.	0.7	8
166	DISTRIBUTION AND KINETICS OF INJECTED NICKEL IN THE PREGNANT RAT. Clinical and Experimental Pharmacology and Physiology, 1986, 13, 91-96.	0.9	9
167	Nickel fixation rat plasma and 21-day placental homogenates. Archives Internationales De Physiologie Et De Biochimie, 1986, 94, 7-10.	0.2	2
168	Effect of an acute injection of nickel upon essential metal homeostasis in the rat. Influence of sex and pregnancy. Biological Research in Pregnancy and Perinatology, 1986, 7, 66-70.	0.1	1
169	The acute toxicity and teratogenicity of nickel in pregnant rats. Toxicology, 1985, 35, 47-57.	2.0	45
170	lron, zinc, and copper content in the tissues of the rat during pregnancy. Biological Trace Element Research, 1985, 8, 105-111.	1.9	12
171	Effects of an Acute Administration of Nickel Upon Blood Glucose Compartmentation in Pregnant Rats. Archives Internationales De Physiologie Et De Biochimie, 1985, 93, 1-5.	0.2	3
172	Cadmium and lead toxicity effects on zinc, copper, nickel and iron distribution in the developing chick embryo. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1985, 80, 185-188.	0.2	6
173	Technological process for production of persimmon and strawberry vinegars. International Journal of Wine Research . 0 55	0.5	10