Markus J Tamas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2760035/publications.pdf Version: 2024-02-01

MADKUS I TAMAS

#	Article	IF	CITATIONS
1	Etp1 confers arsenite resistance by affecting <i>ACR3</i> expression. FEMS Yeast Research, 2022, , .	1.1	1
2	Identification of novel arsenic resistance genes in yeast. MicrobiologyOpen, 2022, 11, .	1.2	1
3	Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. Journal of Cell Science, 2021, 134, .	1.2	11
4	Nuclear envelope budding is a response to cellular stress. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
5	Sequence-specific dynamics of DNA response elements and their flanking sites regulate the recognition by AP-1 transcription factors. Nucleic Acids Research, 2021, 49, 9280-9293.	6.5	21
6	Effects of the Toxic Metals Arsenite and Cadmium on α-Synuclein Aggregation In Vitro and in Cells. International Journal of Molecular Sciences, 2021, 22, 11455.	1.8	13
7	Physical, genetic and functional interactions between the eisosome protein Pil1 and the MBOAT O-acyltransferase Gup1. FEMS Yeast Research, 2021, 21, .	1.1	0
8	The ancillary N-terminal region of the yeast AP-1 transcription factor Yap8 contributes to its DNA binding specificity. Nucleic Acids Research, 2020, 48, 5426-5441.	6.5	7
9	Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Current Genetics, 2018, 64, 177-181.	0.8	52
10	Editorial: Molecular Mechanisms of Metalloid Transport, Toxicity and Tolerance. Frontiers in Cell and Developmental Biology, 2018, 6, 99.	1.8	13
11	Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast. Molecular and Cellular Biology, 2017, 37, .	1.1	58
12	Disentangling genetic and epigenetic determinants of ultrafast adaptation. Molecular Systems Biology, 2016, 12, 892.	3.2	9
13	Cellular and molecular mechanisms of antimony transport, toxicity and resistance. Environmental Chemistry, 2016, 13, 955.	0.7	13
14	The mitogenâ€activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Letters, 2016, 590, 3649-3659.	1.3	21
15	Distinct stress conditions result in aggregation of proteins with similar properties. Scientific Reports, 2016, 6, 24554.	1.6	117
16	Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8. Molecular and Cellular Biology, 2016, 36, 913-922.	1.1	42
17	HwHog1 kinase activity is crucial for survival of Hortaea werneckii in extremely hyperosmolar environments. Fungal Genetics and Biology, 2015, 74, 45-58.	0.9	18
18	Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation. Biomolecules, 2014, 4, 252-267.	1.8	316

Markus J Tamas

#	Article	IF	CITATIONS
19	Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress. Biology Open, 2014, 3, 913-923.	0.6	36
20	Mathematical modelling of arsenic transport, distribution and detoxification processes in yeast. Molecular Microbiology, 2014, 92, 1343-1356.	1.2	15
21	Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1482-1491.	1.1	59
22	Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1295-1306.	0.9	8
23	Application of a peptide-based assay to characterize inhibitors targeting protein kinases from yeast. Current Genetics, 2014, 60, 193-200.	0.8	6
24	Determination of primary sequence specificity of <i>Arabidopsis</i> MAPKs MPK3 and MPK6 leads to identification of new substrates. Biochemical Journal, 2012, 446, 271-278.	1.7	58
25	Yeast Aquaglyceroporins Use the Transmembrane Core to Restrict Glycerol Transport. Journal of Biological Chemistry, 2012, 287, 23562-23570.	1.6	14
26	Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2012, 158, 2325-2335.	0.7	47
27	Modulation of <i>Leishmania major</i> aquaglyceroporin activity by a mitogenâ€activated protein kinase. Molecular Microbiology, 2012, 85, 1204-1218.	1.2	52
28	Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. Journal of Cell Science, 2012, 125, 5073-83.	1.2	121
29	Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Molecular Microbiology, 2012, 84, 1177-1188.	1.2	48
30	Saccharomyces cerevisiae as a Model Organism for Elucidating Arsenic Tolerance Mechanisms. , 2011, , 87-112.		13
31	Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast. PLoS ONE, 2011, 6, e20012.	1.1	23
32	How <i>Saccharomyces cerevisiae</i> copes with toxic metals and metalloids. FEMS Microbiology Reviews, 2010, 34, 925-951.	3.9	254
33	Positional Scanning Peptide Libraries for Kinase Substrate Specificity Determinations: Straightforward and Reproducible Synthesis Using Pentafluorophenyl Esters. ACS Combinatorial Science, 2010, 12, 733-742.	3.3	8
34	Arsenic Transport in Prokaryotes and Eukaryotic Microbes. Advances in Experimental Medicine and Biology, 2010, 679, 47-55.	0.8	44
35	Evolutionary Forces Act on Promoter Length: Identification of Enriched Cis-Regulatory Elements. Molecular Biology and Evolution, 2009, 26, 1299-1307.	3.5	53
36	Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics, 2009, 10, 105.	1.2	100

Markus J Tamas

#	Article	IF	CITATIONS
37	A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3across membranes. BMC Biology, 2008, 6, 26.	1.7	379
38	Mitogen-Activated Protein Kinase Hog1 Mediates Adaptation to G ₁ Checkpoint Arrest during Arsenite and Hyperosmotic Stress. Eukaryotic Cell, 2008, 7, 1309-1317.	3.4	27
39	Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p. Biochemical Journal, 2008, 415, 467-475.	1.7	35
40	Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway. Journal of Cell Science, 2007, 120, 256-264.	1.2	37
41	Quantitative transcriptome, proteome, and sulfur metabolite profiling of theSaccharomyces cerevisiaeresponse to arsenite. Physiological Genomics, 2007, 30, 35-43.	1.0	109
42	The MAPK Hog1p Modulates Fps1p-dependent Arsenite Uptake and Tolerance in Yeast. Molecular Biology of the Cell, 2006, 17, 4400-4410.	0.9	177
43	Mechanisms of toxic metal tolerance in yeast. Topics in Current Genetics, 2005, , 395-454.	0.7	27
44	A Regulatory Domain in the C-terminal Extension of the Yeast Glycerol Channel Fps1p. Journal of Biological Chemistry, 2004, 279, 14954-14960.	1.6	54
45	Transcriptional Activation of Metalloid Tolerance Genes inSaccharomyces cerevisiaeRequires the AP-1–like Proteins Yap1p and Yap8p. Molecular Biology of the Cell, 2004, 15, 2049-2060.	0.9	84
46	Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen. FEBS Journal, 2004, 271, 771-779.	0.2	32
47	Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochemical and Biophysical Research Communications, 2003, 304, 293-300.	1.0	51
48	A Short Regulatory Domain Restricts Glycerol Transport through Yeast Fps1p. Journal of Biological Chemistry, 2003, 278, 6337-6345.	1.6	87
49	The osmotic stress response of Saccharomyces cerevisiae. , 2003, , 121-200.		27
50	Mechanisms involved in metalloid transport and tolerance acquisition. Current Genetics, 2001, 40, 2-12.	0.8	65
51	Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Molecular Microbiology, 2001, 39, 145-157.	1.2	58
52	The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 2001, 40, 1067-1083.	1.2	161
53	The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 40, 1391-1401.	1.2	306
54	Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Letters, 2000, 472, 159-165.	1.3	81

#	Article	IF	CITATIONS
55	An Investigation of the Possible Existence of Homologues of FPS1, a Glycerol Facilitator of Saccharomyces Cerevisiae, in the Osmotolerant Yeast Zygosaccharomyces Rouxii. , 2000, , 393-403.		0
56	Function and Regulation of the Yeast MIP Glycerol Export Channel Fps1p. , 2000, , 423-430.		0
57	Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 1999, 31, 1087-1104.	1.2	357
58	Probing Conserved Regions of the Cytoplasmic LOOP1 Segment Linking Transmembrane Segments 2 and 3 of the Saccharomyces cerevisiae Plasma Membrane H+-ATPase. Journal of Biological Chemistry, 1996, 271, 25438-25445.	1.6	28