
Neelam Sharma-Walia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2759912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hedgehog Signaling: Implications in Cancers and Viral Infections. International Journal of Molecular Sciences, 2021, 22, 1042.	1.8	39
2	Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11, 603309.	1.8	11
3	Salubrinal Exposes Anticancer Properties in Inflammatory Breast Cancer Cells by Manipulating the Endoplasmic Reticulum Stress Pathway. Frontiers in Oncology, 2021, 11, 654940.	1.3	14
4	Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Frontiers in Physiology, 2021, 12, 640374.	1.3	11
5	Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. Journal of Virology, 2020, 94, .	1.5	14
6	Kaposi's Sarcoma-Associated Herpesvirus Infection Induces the Expression of Neuroendocrine Genes in Endothelial Cells. Journal of Virology, 2020, 94, .	1.5	10
7	Antibody-Targeted Nanoparticles for Cancer Treatment. , 2020, , 35-65.		3
8	Arachidonic Acid Derived Lipid Mediators Influence Kaposi's Sarcoma-Associated Herpesvirus Infection and Pathogenesis. Frontiers in Microbiology, 2019, 10, 358.	1.5	15
9	Curbing Lipids: Impacts ON Cancer and Viral Infection. International Journal of Molecular Sciences, 2019, 20, 644.	1.8	16
10	HACE1, an E3 Ubiquitin Protein Ligase, Mitigates Kaposi's Sarcoma-Associated Herpesvirus Infection-Induced Oxidative Stress by Promoting Nrf2 Activity. Journal of Virology, 2019, 93, .	1.5	13
11	Bisbenzimidazoles: Anticancer Vacuolar (H+)-ATPase Inhibitors. , 2019, , .		0
12	Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget, 2018, 9, 36392-36405.	0.8	48
13	Virus and tumor microenvironment induced ER stress and unfolded protein response: from complexity to therapeutics. Oncotarget, 2018, 9, 31920-31936.	0.8	9
14	Abstract 5140: Lipoxins and their role in Kaposi's sarcoma-associated herpesvirus (KSHV) infection and pathogenesis. , 2018, , .		0
15	Fatty acid synthase regulates the pathogenicity of Th17 cells. Journal of Leukocyte Biology, 2017, 102, 1229-1235.	1.5	56
16	An insight into the role of arachidonic acid derived lipid mediators in virus associated pathogenesis and malignancies. Prostaglandins and Other Lipid Mediators, 2016, 126, 46-54.	1.0	21
17	Altering the Anti-inflammatory Lipoxin Microenvironment: a New Insight into Kaposi's Sarcoma-Associated Herpesvirus Pathogenesis. Journal of Virology, 2016, 90, 11020-11031.	1.5	17
18	Implications of a peroxisome proliferator-activated receptor alpha (PPARα) ligand clofibrate in breast cancer. Oncotarget, 2016, 7, 15577-15599.	0.8	52

#	Article	IF	CITATIONS
19	Crosstalk between osteoprotegerin (OPG), fatty acid synthase (FASN) and, cycloxygenase-2 (COX-2) in breast cancer: implications in carcinogenesis. Oncotarget, 2016, 7, 58953-58974.	0.8	25
20	Abstract 5103: Crosstalk between osteoprotegerin (OPG), fatty acid synthase (FASN), and cyclooxygenase-2 (COX-2) in breast cancer: implications in carcinogenesis. , 2016, , .		0
21	Osteoprotegerin secreted by inflammatory and invasive breast cancer cells induces aneuploidy, cell proliferation and angiogenesis. BMC Cancer, 2015, 15, 935.	1.1	33
22	Lipoxins: nature's way to resolve inflammation. Journal of Inflammation Research, 2015, 8, 181.	1.6	135
23	Lipoxins exert antiangiogenic and anti-inflammatory effects on Kaposi's sarcoma cells. Translational Research, 2015, 166, 111-133.	2.2	26
24	Abstract 819: Fatty acid synthase, cycloxygenase-2 (COX-2) and osteoprotegerin (OPG) expression in in invasive breast cancer: Implications in carcinogenesis. , 2015, , .		0
25	Glutamate Secretion and Metabotropic Glutamate Receptor 1 Expression during Kaposi's Sarcoma-Associated Herpesvirus Infection Promotes Cell Proliferation. PLoS Pathogens, 2014, 10, e1004389.	2.1	23
26	The Kaposi's Sarcoma-Associated Herpesvirus (KSHV)-Induced 5-Lipoxygenase-Leukotriene B4 Cascade Plays Key Roles in KSHV Latency, Monocyte Recruitment, and Lipogenesis. Journal of Virology, 2014, 88, 2131-2156.	1.5	25
27	Abstract 1112: Role of osteoprotegerin in inflammatory and invasive breast cancer. , 2014, , .		0
28	Concurrent targeting of eicosanoid receptor 1/eicosanoid receptor 4 receptors and COX-2 induces synergistic apoptosis in Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus associated non-Hodgkin lymphoma cell lines. Translational Research, 2013, 161, 447-468.	2.2	19
29	Cyclooxygenase-2-prostaglandin E2-eicosanoid receptor inflammatory axis: a key player in Kaposi's sarcoma-associated herpes virus associated malignancies. Translational Research, 2013, 162, 77-92.	2.2	48
30	Abstract 2610: Tumor microenvironment of inflammatory breast cancer is critical for mammosphere branching and proliferation , 2013, , .		1
31	COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP. Oncogenesis, 2012, 1, e5-e5.	2.1	43
32	Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene, 2012, 31, 4835-4847.	2.6	46
33	Herpesviruses and Cancer. , 2012, , 133-167.		3
34	Abstract LB-67: COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma associated herpes virus (KSHV) oncoprotein-v-FLIP. , 2012, , .		0
35	Abstract B27: Osteoprotegerin's key role in inflammatory breast cancer: Bane or Boon Cancer Prevention Research, 2012, 5, B27-B27.	0.7	0
36	IFI16 Acts as a Nuclear Pathogen Sensor to Induce the Inflammasome in Response to Kaposi Sarcoma-Associated Herpesvirus Infection. Cell Host and Microbe, 2011, 9, 363-375.	5.1	613

#	Article	IF	CITATIONS
37	Phosphorylation and Polyubiquitination of Transforming Growth Factor β-Activated Kinase 1 Are Necessary for Activation of NF-βB by the Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor. Journal of Virology, 2011, 85, 1980-1993.	1.5	23
38	Targeting KSHV/HHV-8 Latency with COX-2 Selective Inhibitor Nimesulide: A Potential Chemotherapeutic Modality for Primary Effusion Lymphoma. PLoS ONE, 2011, 6, e24379.	1.1	38
39	Characterization of entry and infection of monocytic THP-1 cells by Kaposi's sarcoma associated herpesvirus (KSHV): Role of heparan sulfate, DC-SIGN, integrins and signaling. Virology, 2010, 406, 103-116.	1.1	54
40	NFAT and CREB Regulate Kaposi's Sarcoma-Associated Herpesvirus-Induced Cyclooxygenase 2 (COX-2). Journal of Virology, 2010, 84, 12733-12753.	1.5	32
41	Piracy of Prostaglandin E2/EP Receptor–Mediated Signaling by Kaposi's Sarcoma-Associated Herpes Virus (HHV-8) for Latency Gene Expression: Strategy of a Successful Pathogen. Cancer Research, 2010, 70, 3697-3708.	0.4	32
42	Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion. PLoS Pathogens, 2010, 6, e1000777.	2.1	113
43	Kaposi's Sarcoma-Associated Herpesvirus Utilizes an Actin Polymerization-Dependent Macropinocytic Pathway To Enter Human Dermal Microvascular Endothelial and Human Umbilical Vein Endothelial Cells. Journal of Virology, 2009, 83, 4895-4911.	1.5	140
44	Kaposi's Sarcoma-Associated Herpesvirus Upregulates Angiogenin during Infection of Human Dermal Microvascular Endothelial Cells, Which Induces 45S rRNA Synthesis, Antiapoptosis, Cell Proliferation, Migration, and Angiogenesis. Journal of Virology, 2009, 83, 3342-3364.	1.5	59
45	Kaposi Sarcoma-associated herpes virus (KSHV) G protein-coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: A potential positive feedback loop for sustained ORF50 gene expression. Virology, 2009, 392, 34-51.	1.1	31
46	KSHV Entry and Infection of Target Cells. , 2009, , 583-609.		1
47	Kaposi's Sarcoma-Associated Herpesvirus Induces Sustained Levels of Vascular Endothelial Growth Factors A and C Early during In Vitro Infection of Human Microvascular Dermal Endothelial Cells: Biological Implications. Journal of Virology, 2008, 82, 1759-1776.	1.5	62
48	Kaposi's Sarcoma-Associated Herpesvirus Forms a Multimolecular Complex of Integrins (αVÎ25, αVÎ23, and α3Î2] and CD98-xCT during Infection of Human Dermal Microvascular Endothelial Cells, and CD98-xCT Is Essential for the Postentry Stage of Infection. Journal of Virology, 2008, 82, 12126-12144.	.) 1.5	102
49	Kaposi's Sarcoma-Associated Herpesvirus Induces Sustained NF-κB Activation during De Novo Infection of Primary Human Dermal Microvascular Endothelial Cells That Is Essential for Viral Gene Expression. Journal of Virology, 2007, 81, 3949-3968.	1.5	101
50	Lipid Rafts of Primary Endothelial Cells Are Essential for Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8-Induced Phosphatidylinositol 3-Kinase and RhoA-GTPases Critical for Microtubule Dynamics and Nuclear Delivery of Viral DNA but Dispensable for Binding and Entry. Journal of Virology, 2007, 81, 7941-7959.	1.5	81
51	RhoA-GTPase Facilitates Entry of Kaposi's Sarcoma-Associated Herpesvirus into Adherent Target Cells in a Src-Dependent Manner. Journal of Virology, 2006, 80, 11432-11446.	1.5	83
52	Focal Adhesion Kinase Is Critical for Entry of Kaposi's Sarcoma-Associated Herpesvirus into Target Cells. Journal of Virology, 2006, 80, 1167-1180.	1.5	75
53	Cyclooxygenase 2 Induced by Kaposi's Sarcoma-Associated Herpesvirus Early during In Vitro Infection of Target Cells Plays a Role in the Maintenance of Latent Viral Gene Expression. Journal of Virology, 2006, 80, 6534-6552.	1.5	67
54	ERK1/2 and MEK1/2 Induced by Kaposi's Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Early during Infection of Target Cells Are Essential for Expression of Viral Genes and for Establishment of Infection. Journal of Virology, 2005, 79, 10308-10329.	1.5	162

#	Article	IF	CITATIONS
55	Envelope Glycoprotein gB of Kaposi's Sarcoma-Associated Herpesvirus Is Essential for Egress from Infected Cells. Journal of Virology, 2005, 79, 10952-10967.	1.5	56
56	Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 Envelope Glycoprotein gB Induces the Integrin-Dependent Focal Adhesion Kinase-Src-Phosphatidylinositol 3-Kinase-Rho GTPase Signal Pathways and Cytoskeletal Rearrangements. Journal of Virology, 2004, 78, 4207-4223.	1.5	147
57	Human Herpesvirus 8 Envelope Glycoprotein B Mediates Cell Adhesion via Its RGD Sequence. Journal of Virology, 2003, 77, 3131-3147.	1.5	109
58	Osteoprotegerin rich tumor microenvironment: implications in breast cancer. Oncotarget, 0, 7, 42777-42791.	0.8	24