Elvira Shults

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2759625/publications.pdf Version: 2024-02-01

Εινίολ Shilits

#	Article	IF	CITATIONS
1	Efficient synthesis of the first betulonic acid–acetylene hybrids and their hepatoprotective and anti-inflammatory activity. Bioorganic and Medicinal Chemistry, 2009, 17, 5164-5169.	1.4	46
2	Gram-scale synthesis of pinusolide and evaluation of its antileukemic potential. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4228-4232.	1.0	38
3	Design, Synthesis and Antibacterial Activity of Coumarin-1,2,3-triazole Hybrids Obtained from Natural Furocoumarin Peucedanin. Molecules, 2019, 24, 2126.	1.7	34
4	Biologically active compounds from Limonium Gmelinii and L. Popovii I. Chemistry of Natural Compounds, 2004, 40, 465-471.	0.2	32
5	Synthesis and HIV-1 integrase inhibitory activity of spiroundecane(ene) derivatives. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1362-1368.	1.0	27
6	Synthesis of 1H-1,2,3-triazole linked aryl(arylamidomethyl) – dihydrofurocoumarin hybrids and analysis of their cytotoxicity. European Journal of Medicinal Chemistry, 2015, 100, 119-128.	2.6	27
7	Chromones and coumarins from Saposhnikovia divaricata (Turcz.) Schischk. Growing in Buryatia and Mongolia and their cytotoxicity. Journal of Ethnopharmacology, 2020, 261, 112517.	2.0	27
8	Furanoditerpenoids of the Labdane Series: Occurrence in Plants, Total Synthesis, Several Transformations, and Biological Activity. Chemistry of Natural Compounds, 2014, 50, 2-21.	0.2	26
9	Phenolic compounds from Glycyrrhiza pallidiflora Maxim. and their cytotoxic activity. Natural Product Research, 2017, 31, 445-452.	1.0	23
10	Synthesis and study of mutagenic properties of lupane triterpenoids containing 1,2,3-triazole fragments in the C-30 position. Chemistry of Natural Compounds, 2013, 49, 657-664.	0.2	21
11	Selecting a Green Strategy on Extraction of Birch Bark and Isolation of Pure Betulin Using Monoterpenes. ACS Sustainable Chemistry and Engineering, 2018, 6, 6281-6288.	3.2	20
12	Lupane-type conjugates with aminoacids, 1,3,4- oxadiazole and 1,2,5-oxadiazole-2-oxide derivatives: Synthesis, anti-inflammatory activity and in silico evaluation of target affinity. Steroids, 2019, 150, 108443.	0.8	19
13	Synthesis of 30-Amino Derivatives of Lupane Triterpenoids. Chemistry of Natural Compounds, 2005, 41, 692-700.	0.2	18
14	Effect of nitrogen-containing derivatives of the plant triterpenes betulin and glycyrrhetic acid on the growth of MT-4, MOLT-4, CEM, and Hep G2 tumor cells. Russian Journal of Bioorganic Chemistry, 2007, 33, 579-583.	0.3	18
15	Triterpenoid saponins from the roots of <i>Acanthophyllum gypsophiloides</i> Regel. Beilstein Journal of Organic Chemistry, 2012, 8, 763-775.	1.3	18
16	Anxiolytic Activity of Diterpene Alkaloid Songorine. Bulletin of Experimental Biology and Medicine, 2015, 159, 620-622.	0.3	17
17	Study of plant coumarins 1. Transformations of peucedanin. Russian Chemical Bulletin, 2006, 55, 375-379.	0.4	16
18	Study of alkaloids of the Siberian and Altai flora 14. Synthesis of alkaloid-based tertiary N-(3-arylprop-2-ynyl)amines. Russian Chemical Bulletin, 2007, 56, 1261-1267.	0.4	16

#	Article	IF	CITATIONS
19	Design, synthesis, cytotoxicity, and molecular modeling study of 2,4,6-trisubstituted pyrimidines with anthranilate ester moiety. Medicinal Chemistry Research, 2019, 28, 545-558.	1.1	16
20	Synthesis of cytotoxic urs-12-ene- and 28-norurs-12-ene- type conjugates with amino- and mercapto-1,3,4-oxadiazoles and mercapto-1,2,4-triazoles. Steroids, 2020, 153, 108524.	0.8	16
21	Synthesis and cytotoxicity of hybrids of 1,3,4- or 1,2,5-oxadiazoles tethered from ursane and lupane core with 1,2,3-triazole. Steroids, 2020, 162, 108698.	0.8	16
22	Synthetic transformations of methylenelactones of eudesmanic type. Behavior of isoalantolactone under the conitions of heck reaction. Russian Journal of Organic Chemistry, 2010, 46, 1719-1734.	0.3	15
23	Involvement of PI3K, MAPK ERK1/2 and p38 in Functional Stimulation of Mesenchymal Progenitor Cells by Alkaloid Songorine. Bulletin of Experimental Biology and Medicine, 2015, 159, 58-61.	0.3	15
24	An approach to effective green extraction of triterpenoids from outer birch bark using ethyl acetate with extractant recycle. Industrial Crops and Products, 2017, 102, 122-132.	2.5	15
25	Synthetic transformations of higher terpenoids: XXIV. Synthesis of cyanoethyl derivatives of lupane triterpenoids and their transformation into 1,2,4-oxadiazoles. Russian Journal of Organic Chemistry, 2011, 47, 589-601.	0.3	14
26	Study of skin anti-ageing and anti-inflammatory effects of dihydroquercetin, natural triterpenoinds, and their synthetic derivatives. Russian Journal of Bioorganic Chemistry, 2012, 38, 328-334.	0.3	14
27	Synthetic Transformations of Higher Terpenoids. XXXIV.* Preparation of Carboxyl Derivatives of Isopimaric Acid. Chemistry of Natural Compounds, 2014, 50, 673-680.	0.2	14
28	Synthetic Transformations of Higher Terpenoids. XXXIII.* Preparation of 15,16-Dihydroisopimaric Acid and Methyl Dihydroisopimarate and their Transformations. Chemistry of Natural Compounds, 2014, 49, 1067-1075.	0.2	14
29	Chelidonic Acid and Its Derivatives from Saussurea Controversa: Isolation, Structural Elucidation and Influence on the Osteogenic Differentiation of Multipotent Mesenchymal Stromal Cells In Vitro. Biomolecules, 2019, 9, 189.	1.8	13
30	Electrosynthesis of Stable Betulinâ€Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupaneâ€Type Triterpenoidâ€Isoxazole Conjugates. European Journal of Organic Chemistry, 2021, 2021, 2557-2577.	1.2	13
31	(+)-Globulol as a new sesquiterpene alcohol fromAngelica sylvestris L Russian Chemical Bulletin, 1999, 48, 600-603.	0.4	12
32	Fatty-acid composition of two Limonium plant species. Chemistry of Natural Compounds, 2004, 40, 417-419.	0.2	12
33	Synthesis, in vivo Anticoagulant Evaluation and Molecular Docking Studies of Bicoumarins Obtained from Furocoumarin Peucedanin. Medicinal Chemistry, 2016, 12, 674-683.	0.7	12
34	Thebaine Adducts with Maleimides. Synthesis and Transformations. Russian Journal of Organic Chemistry, 2005, 41, 1132-1144.	0.3	11
35	Synthetic transformations of higher terpenoids: XXIII. Synthesis of diterpenoid-based dihydroisoindolones. Russian Journal of Organic Chemistry, 2010, 46, 1869-1882.	0.3	11
36	Furanolabdanoid–based 1,2,4â€oxadiazoles: Synthesis and cytotoxic activity. ChemistrySelect, 2016, 1, 417-424.	0.7	11

3

#	Article	IF	CITATIONS
37	6-(4′-Aryl-1′,2′,3′-triazolyl)-spirostan-3,5-diols and 6-(4′-Aryl-1′,2′,3′-triazolyl)-7-hydroxyspirosta-1,4-dien-3-ones: Synthesis and analysis of their cytotoxi Steroids, 2019, 151, 108460.	cit 9. 8	11
38	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 665-671.	0.3	10
39	Synthesis and Cytotoxic Activity of a New Group of Heterocyclic Analogues of the Combretastatins. Molecules, 2014, 19, 7881-7900.	1.7	10
40	The flavanone pinostrobin in the synthesis of coumarin-chalcone hybrids with a triazole linker. Chemistry of Heterocyclic Compounds, 2015, 51, 146-152.	0.6	10
41	Role of cAMP- and IKK-2-Dependent Signaling Pathways in Functional Stimulation of Mesenchymal Progenitor Cells with Alkaloid Songorine. Bulletin of Experimental Biology and Medicine, 2015, 159, 642-645.	0.3	10
42	Synthetic transformations of higher terpenoids: XIV. Synthesis of pyrrololabdanoids from lambertianic acid. Russian Journal of Organic Chemistry, 2006, 42, 828-838.	0.3	9
43	Study of alkaloids of the Siberian and Altai flora 13. Synthesis of alkynyllappaconitines. Russian Chemical Bulletin, 2007, 56, 356-360.	0.4	9
44	Synthetic transformations of higher terpenoids. XXI.* Preparation of phlomisoic acid and its N-containing derivatives. Chemistry of Natural Compounds, 2010, 46, 233-241.	0.2	9
45	Study of plant coumarins: X. Peurutenicin triflate in cross-coupling reactions. Russian Journal of Organic Chemistry, 2012, 48, 1094-1102.	0.3	9
46	Plant coumarins. IX.* Phenolic compounds of Ferulopsis hystrix growing in Mongolia. Cytotoxic activity of 8,9-dihydrofurocoumarins. Chemistry of Natural Compounds, 2012, 48, 211-217.	0.2	9
47	Study of plant coumarins. 12*. Synthesis of 2-(1,2,3-triazolyl)-modified furocoumarins. Chemistry of Heterocyclic Compounds, 2013, 49, 551-560.	0.6	9
48	Diels-alder reactions with ethyl 1-benzofuran-3-carboxylates. Russian Journal of Organic Chemistry, 2013, 49, 872-885.	0.3	9
49	Synthetic transformation of higher terpenoids 31. Synthesis of 1,2,3-triazolyl-containing furan labdanoids and studies of their cytotoxic activity. Russian Chemical Bulletin, 2013, 62, 2046-2055.	0.4	9
50	Synthesis of 19-(2,6-Dimethylpyrid-4-yl)-20,29,30-trinorlupanes. Chemistry of Natural Compounds, 2014, 50, 305-310.	0.2	9
51	Synthetic transformations of sesquiterpene lactones 9.* Synthesis of 13-(pyridinyl)eudesmanolides. Chemistry of Heterocyclic Compounds, 2016, 52, 165-171.	0.6	9
52	Diels–Alder Reactions with Cyclic Sulfones: VII. Synthesis of 1-Benzothiophene 1,1-Dioxide Derivatives. Russian Journal of Organic Chemistry, 2004, 40, 854-865.	0.3	8
53	Synthetic Transformations of Higher Terpenoids: X. Intramolecular Cyclization of N-Allyl- and N-Propargyl-16-dialkylammoniomethyl-12-furfuryl-13,14,15,16-tetranorlabdanoid Bromides. Russian Journal of Organic Chemistry, 2005, 41, 1145-1157.	0.3	8
54	Synthetic transformations of higher terpenoids: XII. Transformation of lambertianic acid into 14,16-epoxyabietane diterpenoids. Russian Journal of Organic Chemistry, 2006, 42, 36-41.	0.3	8

#	Article	IF	CITATIONS
55	Diels-alder reactions with cyclic sulfones: VIII. Organic catalysis in the synthesis of spiro[1-benzothiophene-4,5′-pyrimidine]-2′,4′,6′-trione 1,1-dioxides and 2′-thioxospiro[1-benzothiophene-4,5′-pyrimidine]-4′,6′-dione 1,1-dioxides. Russian Journal of Organic Chemistry, 2009, 45, 87-101.	0.3	8
56	Synthetic transformations of sesquiterpene lactones 6. Alantolactone and isoalantolactone device device devication devica	0.4	8
57	Synthetic transformations of sesquiterpene lactones. IV.* Synthesis and transformations of gem-dichlorocyclopropyl-substituted isoalantolactone derivatives. Chemistry of Natural Compounds, 2012, 48, 238-244.	0.2	8
58	Synthesis of a new class of bisheterocycles via the Heck reaction of eudesmane type methylene lactones with 8-bromoxanthines. Tetrahedron, 2017, 73, 2717-2726.	1.0	8
59	Synthesis of hybrid molecules containing pyrimidine and diterpene alkaloid lappaconitine fragments. Chemistry of Heterocyclic Compounds, 2018, 54, 1131-1138.	0.6	8
60	Hybrides of Alkaloid Lappaconitine with Pyrimidine Motif on the Anthranilic Acid Moiety: Design, Synthesis, and Investigation of Antinociceptive Potency. Molecules, 2020, 25, 5578.	1.7	8
61	Plant Coumarins. 2. Beckmann Rearrangement of Oreoselone E- and Z-Oximes. Chemistry of Natural Compounds, 2005, 41, 657-662.	0.2	7
62	Antitumor and antimetastatic effects of betulonic acid amides in mice with transplantable Lewis carcinoma. Bulletin of Experimental Biology and Medicine, 2006, 142, 69-72.	0.3	7
63	Palladium-Catalyzed 2-Phenylethenylation of Codeine: 8-[(1E)-2-Phenylethenyl]codeinone Dimethyl Ketal as the Unexpected †Masked' Diene for the Preparation of 19-SubstitutedDiels†Alder Adducts of Thebaine. Helvetica Chimica Acta, 2006, 89, 861-869.	1.0	7
64	Plant metabolites of the Siberian flora. Chemical transformations and the scope of practical application. Russian Chemical Reviews, 2007, 76, 655-671.	2.5	7
65	Synthetic transformations of higher terpenoids: XIX. Synthesis of 1,7-epoxyisoindolones and 7,9a-epoxythiazolo[2,3-a]isoindolones from terpenoids. Russian Journal of Organic Chemistry, 2009, 45, 637-649.	0.3	7
66	Synthetic transformations of sesquiterpene lactones: VII. Palladium-catalyzed cross-coupling of isoalantolactone with 5-halouracils. Russian Journal of Organic Chemistry, 2013, 49, 1783-1797.	0.3	7
67	Synthesis and Cytotoxic Activity of Lupane Triterpenoids Containing 1,3,4-Oxadiazoles. Chemistry of Natural Compounds, 2014, 50, 1016.	0.2	7
68	Role of NF-κB/IKK-Dependent Signaling in Functional Stimulation of Mesenchymal Progenitor Cells by Alkaloid Songorine. Bulletin of Experimental Biology and Medicine, 2015, 158, 624-627.	0.3	7
69	Biologically Active Compounds from the Lipid Fraction of Saposhnikovia divaricata. Chemistry of Natural Compounds, 2017, 53, 138-140.	0.2	7
70	Copper-catalyzed 1,3-dipolar cycloaddition reaction of spirosolanederived azide for the preparation of modified solasodine alkaloid. Chemistry of Heterocyclic Compounds, 2018, 54, 411-416.	0.6	7
71	Natural Products as a Source of Antiarrhythmic Drugs. Mini-Reviews in Medicinal Chemistry, 2018, 18, 345-362.	1.1	7
72	Synthetic transformations of natural diterpenes. Synthesis of alkaloid-like compounds from lambertianic acid. Arkivoc, 2003, 2003, 172-183.	0.3	7

#	Article	IF	CITATIONS
73	Synthetic transformations of higher terpenoids: XIV. Heterocyclization reactions of 15,16,18-ricarboxylabdadiene. New nitrogen-containing diterpenoids. Russian Journal of Organic Chemistry, 2006, 42, 707-718.	0.3	6
74	Synthetic transformations of higher terpenoids: XV. Transformations of azlactone derived from 16-formyllambertianic acid methyl ester. Russian Journal of Organic Chemistry, 2007, 43, 839-851.	0.3	6
75	New acyl derivatives of N-deacetyllappaconitine. Chemistry of Natural Compounds, 2008, 44, 346-351.	0.2	6
76	Synthetic transformations of higher terpenoids: XVII. Intramolecular cyclization of N-furfuryl amides of the labdane series. Russian Journal of Organic Chemistry, 2008, 44, 516-523.	0.3	6
77	Reaction of triphenyl borate with 1,3,5-trioxane. Russian Journal of Organic Chemistry, 2009, 45, 1772-1775.	0.3	6
78	Synthetic transformations of isoquinoline alkaloids. Synthesis of N′-substituted 1-alkynyl-7α,8α-(2,5-dioxopyrrolidino)-[3,4-h]-6,14-endo-ethenotetrahydrothebaines and their transformations. Russian Journal of Organic Chemistry, 2012, 48, 1473-1483.	0.3	6
79	Synthetic transformations of higher terpenoids. XXVII.* Synthesis of 7-hydroxylabdanoids and their transformations. Chemistry of Natural Compounds, 2012, 48, 250-257.	0.2	6
80	Modification of biologically active plant metabolites via the metal complex catalysis reactions as a promising direction in medicinal chemistry. Russian Chemical Bulletin, 2013, 62, 605-621.	0.4	6
81	Synthetic transformations of isoquinoline alkaloids. 1-alkynyl-3,6-dimethoxy-N-methyl-4,5α-epoxy-6,18-endoethenobenzo[i]isomorphinans and their transformations. Russian Journal of Organic Chemistry, 2013, 49, 1502-1513.	0.3	6
82	Study of plant coumarins: XIV. Catalytic amination of 7-hydroxycoumarin derivatives. Russian Journal of Organic Chemistry, 2014, 50, 662-669.	0.3	6
83	Synthetic Transformations of Sesquiterpene Lactones 10*. Synthesis of 13-Arylguaianolides. Chemistry of Heterocyclic Compounds, 2016, 52, 788-796.	0.6	6
84	Synthetic Transformations of Higher Terpenoids. 36.* Synthesis of 13-(Oxazol-5-Yl)-15,16-Bisnorisopimaranes. Chemistry of Natural Compounds, 2018, 54, 293-300.	0.2	6
85	Flavonol Glycosides from Saussurea controversa and Their Efficiency in Experimental Osteomyelitis. Planta Medica International Open, 2018, 5, e24-e29.	0.3	6
86	Efficient Synthesis of the <i>Nâ€</i> (butaâ€2,3â€dienyl)carboxamide of Isopimaric Acid and the Potential of This Compound towards Heterocyclic Derivatives of Diterpenoids. ChemistryOpen, 2018, 7, 890-901.	0.9	6
87	Synthetic Transformations of Higher Terpenoids. 37. Synthesis and Cytotoxicity of 4-(Oxazol-2-Yl)-18-Norisopimaranes. Chemistry of Natural Compounds, 2019, 55, 52-59.	0.2	6
88	Synthesis and analgesic activity of 1-[(1,2,3-triazol-1-yl)methyl]quinolizines based on the alkaloid lupinine. Chemistry of Heterocyclic Compounds, 2021, 57, 911-919.	0.6	6
89	Synthetic Transformations of Higher Terpenoids: IX. Nitrogen-Containing Heterocyclic Compounds on the Basis of Lambertianic Acid. Russian Journal of Organic Chemistry, 2005, 41, 535-545.	0.3	5
90	Synthesis of 5-Hydroxy-1,3-benzoxathiol-2-one and 2-Amino-1,3-benzothiazol-6-ol Derivatives from Chrysenequinonecarboxylic Acid. Russian Journal of Organic Chemistry, 2005, 41, 828-831.	0.3	5

#	Article	IF	CITATIONS
91	Study of alkaloids of the Siberian and Altai flora. Russian Chemical Bulletin, 2006, 55, 1077-1084.	0.4	5
92	Synthesis of betulonic acid amides. Chemistry of Natural Compounds, 2008, 44, 327-333.	0.2	5
93	Plant Coumarins. 3. (+)-PTeryxin from Peucedanum terebinthaceum. Chemistry of Natural Compounds, 2008, 44, 578-581.	0.2	5
94	Synthetic transformations of higher terpenoids: XVI. Synthesis of decahydronaphtho[1,2-g]indoles from lambertianic acid. Russian Journal of Organic Chemistry, 2008, 44, 67-75.	0.3	5
95	Synthesis and antimicrobial activity of quaternary salts of the alkaloid glaucine. Pharmaceutical Chemistry Journal, 2009, 43, 255-257.	0.3	5
96	Synthetic transformations of higher terpenoids: XVIII. Synthesis of optically active 9,10-anthraquinone derivatives. Russian Journal of Organic Chemistry, 2009, 45, 102-114.	0.3	5
97	Synthesis of 7-(furan-2-yl)-7,8,10,10a-tetrahydro-6H-benzo[c]-chromen-6,9(6aH)-diones. Russian Journal of Organic Chemistry, 2010, 46, 1709-1718.	0.3	5
98	Plant coumarins: VI. Synthesis of 3-vinylfurocoumarin derivatives based on oreoselone. Russian Journal of Organic Chemistry, 2011, 47, 1083-1090.	0.3	5
99	Plant coumarins: VIII. Suzuki reaction in the synthesis of 3-aryl(hetaryl)furocoumarins. Russian Journal of Organic Chemistry, 2011, 47, 1404-1409.	0.3	5
100	Synthesis of substituted indolizino[8,7-b]indoles from harmine and their biological activity. Chemistry of Heterocyclic Compounds, 2011, 46, 1494-1499.	0.6	5
101	Plant coumarins: XIII. Synthesis of 2,3,9-trisubstituted furocoumarins. Russian Journal of Organic Chemistry, 2013, 49, 403-411.	0.3	5
102	Plant coumarins: XV. Oreoselone in the synthesis of 3-[(Z)-alkenyl]- and 3-(1H-1,2,3-triazol-4-yl)psoralens. Russian Journal of Organic Chemistry, 2015, 51, 957-966.	0.3	5
103	Synthetic Transformations of Higher Terpenoids. XXXV.* Synthesis and Cytotoxicity of Macroheterocyclic Compounds Based on Lambertianic Acid. Chemistry of Natural Compounds, 2017, 53, 77-82.	0.2	5
104	A study of plant coumarins 16*. Synthesis and transformations of 7-alkynylcoumarins. Chemistry of Heterocyclic Compounds, 2017, 53, 1302-1309.	0.6	5
105	Design and Synthesis of 3â€(<i>N</i> â€Substituted)aminocoumarins as Anticancer Agents from 3â€Bromopeuruthenicin. ChemistrySelect, 2019, 4, 10197-10201.	0.7	5
106	1-Hydroxyanthraquinones Containing Aryl Substituents as Potent and Selective Anticancer Agents. Molecules, 2020, 25, 2547.	1.7	5
107	Synthesis and analgesic activity of 1,3,5-trisubstituted pyrazoles containing a diterpenoid moiety. Russian Chemical Bulletin, 2020, 69, 537-546.	0.4	5
108	Synthesis of water-soluble ester-linked ursolic acid–gallic acid hybrids with various hydrolytic stabilities. Synthetic Communications, 2021, 51, 2466-2477.	1.1	5

#	Article	IF	CITATIONS
109	Synthesis and Cytotoxicity of Sulfanyl, Sulfinyl and Sulfonyl Group Containing Ursane Conjugates with 1,3,4â€Oxadiazoles and 1,2,4â€Triazoles. ChemistrySelect, 2021, 6, 6472-6477.	0.7	5
110	Cross oupling yclocondensation Reaction Sequence to Access a Library of Ring Bridged Pyrimidinoâ€ŧetrahydrothebaines and Pyrimidinotetrahydrooripavines. ChemistrySelect, 2021, 6, 7391-7397.	0.7	5
111	Solification with Hydrobromic Acid as a Factor Defining the Antiarrhythmic Effect of Lappaconitine Derivatives. Letters in Drug Design and Discovery, 2009, 6, 475-477.	0.4	5
112	Rapid Access to Oxazine Fused Furocoumarins and in vivo and in silico Studies of theirs Biological Activity. Medicinal Chemistry, 2017, 13, 625-632.	0.7	5
113	Thebaine Cyclopropanation. Russian Journal of Organic Chemistry, 2003, 39, 1083-1088.	0.3	4
114	Effects of natural and artificial defoliation on the content and composition of extractive substances in birch leaves. Applied Biochemistry and Microbiology, 2005, 41, 94-98.	0.3	4
115	Syntheses based on anabasine. Preparation and transformations of N-oxides. Russian Chemical Bulletin, 2006, 55, 331-337.	0.4	4
116	Synthesis of acetylene derivatives of lappaconitine. Doklady Chemistry, 2007, 415, 181-185.	0.2	4
117	Study of alkaloids of the flora of Siberia and Altai: Synthesis of bivalent ligands of the aconitane type. Doklady Chemistry, 2007, 416, 251-256.	0.2	4
118	Synthesis and analgesic activity of pyrrolidinomorphinan derivatives. Pharmaceutical Chemistry Journal, 2007, 41, 74-77.	0.3	4
119	Synthetic transformations of higher terpenoids: XXII. Reactions of lambertianic acid derivatives with organozinc reagents obtained from ethyl bromoalkanoates. Russian Journal of Organic Chemistry, 2010, 46, 1339-1347.	0.3	4
120	Plant coumarins: V. Palladium-catalyzed amination of 2-(1,3-dibromopropan-2-ylidene)oreoselone. Russian Journal of Organic Chemistry, 2010, 46, 1858-1868.	0.3	4
121	Alkaloids of Siberia and altai flora. 17.* Synthesis of N-containing derivatives of the diterpene alkaloid lappaconitine. Chemistry of Natural Compounds, 2010, 46, 593-597.	0.2	4
122	Synthesis of hybrid molecules containing fragments of sesquiterpene lactones and plant alkaloids. Chemistry of Natural Compounds, 2011, 46, 880-885.	0.2	4
123	Synthetic transformations of higher terpenoids: XXVIII. Diels-Alder reactions of 16-(trimethylsiloxybutadienyl) labdanoids. Russian Journal of Organic Chemistry, 2012, 48, 840-850.	0.3	4
124	Furocoumarins from Peucedanum baicalense of mongolia flora and their cytotoxic activity. Chemistry of Natural Compounds, 2013, 49, 99-102.	0.2	4
125	Synthetic Transformations of Sesquiterpene Lactones. 8*. Synthesis of 13-(2-Oxofuro-) Tj ETQq1 1 0.784314 rgBT	Overlock	10 Tf 50 1
126	A Study of Plant Coumarins. 18. Conjugates of Coumarins with Lupane Triterpenoids and 1,2,3-Triazoles: Synthesis and Anti-Inflammatory Activity. Russian Journal of Bioorganic Chemistry.	0.3	4

1,2,3-Triazoles: Synthesis and Anti-Inflammatory Activity. Russian Journal of Bioorganic Chemistry, 2020, 46, 125-132. 126

0.3

#	Article	IF	CITATIONS
127	Synthesis, Transformations and Characterization of 8 Aminomethyl Substituted Umbelliferones as Probable Anti-Arrhythmic Agents. Current Bioactive Compounds, 2019, 15, 71-82.	0.2	4
128	An Approach toward 17-Arylsubstituted Marginatafuran-Type Isospongian Diterpenoids via a Palladium-Catalyzed Heck–Suzuki Cascade Reaction of 16-Bromolambertianic Acid. Molecules, 2022, 27, 2643.	1.7	4
129	Title is missing!. Russian Chemical Bulletin, 2001, 50, 2092-2094.	0.4	3
130	Study of alkaloids of the Siberian and Altai flora. 11. Synthesis of new lappaconitine derivatives. Russian Chemical Bulletin, 2003, 52, 2500-2506.	0.4	3
131	Xanthones from Halenia corniculata. Synthesis and cholagogic action of certain derivatives. Chemistry of Natural Compounds, 2004, 40, 451-456.	0.2	3
132	Anabasine as a precursor for the synthesis of potential agonists of neuronal acetylcholine receptors. Doklady Chemistry, 2007, 413, 59-63.	0.2	3
133	Sesquiterpene metylenelactones in a palladium-catalyzed cross-coupling reaction. Doklady Chemistry, 2009, 426, 138-142.	0.2	3
134	The response of gypsy moth (Lymantria dispar L.) larvae infected with nuclear polyhedrosis virus to induced resistance in birch (Betula pendula Roth.). Russian Journal of Ecology, 2009, 40, 434-439.	0.3	3
135	Synthetic transformations of higher terpenoids: XX. Synthesis and transformations of diterpene ureido esters. Russian Journal of Organic Chemistry, 2010, 46, 1140-1150.	0.3	3
136	Alkaloids of Eminium lehmannii. Chemistry of Natural Compounds, 2010, 46, 154-157.	0.2	3
137	Alkaloids of Siberia and Altai flora: XVIII. Alkyl 2-acetylamino-5-[2-(pyridin-3-yl)vinyl]benzoates in the synthesis of indolizines containing an anthranilic acid ester moiety. Russian Journal of Organic Chemistry, 2011, 47, 581-588.	0.3	3
138	Plant coumarins: VII. Amination of oreoselone trifluoromethanesulfonate. Russian Journal of Organic Chemistry, 2011, 47, 1390-1403.	0.3	3
139	Synthetic transformations of higher terpenoids: XXIX. Gold catalyzed cycloisomerization of propargylaminomethyl substituted and propargyloxymethyl substituted furanolabdanoids. Russian Journal of Organic Chemistry, 2012, 48, 1081-1089.	0.3	3
140	First synthesis of macrocyclic furanolabdanoids via cycloaddition of diacetylenic derivatives of lambertianic acid to 1,5-diazidopentane. Doklady Chemistry, 2012, 446, 174-179.	0.2	3
141	Synthetic transformations of sesquiterpene lactones. V.* Synthesis and cytotoxicity of 13-aryl-substituted tourneforin derivatives. Chemistry of Natural Compounds, 2012, 48, 245-249.	0.2	3
142	Synthesis of N-aryloxyalkylanabasine derivatives. Chemistry of Natural Compounds, 2013, 49, 294-301.	0.2	3
143	Plant coumarins: XI. Cross coupling reactions with 2-(tosyl)oreoselone. Russian Journal of Organic Chemistry, 2013, 49, 99-107.	0.3	3
144	Synthesis of 13-Aryl Derivatives of the Sesquiterpene Lactone Argolide and their Analgesic Activity. Chemistry of Natural Compounds, 2013, 49, 875-881.	0.2	3

#	Article	IF	CITATIONS
145	Synthesis and Cytotoxicity of Pinostrobin Hydrazone Derivatives. Chemistry of Natural Compounds, 2015, 51, 464-471.	0.2	3
146	Genotoxic activity of 1,2,3â€ŧriazolyl modified furocoumarins and 2,3â€dihydrofurocoumarins. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22396.	1.4	3
147	Regioselective Synthesis of 1,3,5-Trisubstituted Pyrazoles Containing an Anthranilic Acid Motif. Chemistry of Heterocyclic Compounds, 2019, 55, 943-955.	0.6	3
148	A facile approach to 6-amino-2 <i>H</i> -pyrano[2,3-g]isoquinolin-2-ones <i>via</i> a sequential Sonogashira coupling of 6-cyanoumbelliferone triflate and annulations with amines. Synthetic Communications, 2019, 49, 3301-3310.	1.1	3
149	Synthetic Transformations of Higher Terpenoids. 39.â^— Synthesis and Analgesic Activity of Isopimaric Acid Derivatives. Chemistry of Natural Compounds, 2021, 57, 474-481.	0.2	3
150	Calcium Chelidonate: Semi-Synthesis, Crystallography, and Osteoinductive Activity In Vitro and In Vivo. Pharmaceuticals, 2021, 14, 579.	1.7	3
151	Synthesis of Alkaloid Sinomenine Derivatives Containing a Pyrimidine Substituent in Ring A. Chemistry of Heterocyclic Compounds, 2021, 57, 934-943.	0.6	3
152	Conjugates of Lupane Triterpenoids with Arylpyrimidines: Synthesis and Anti-inflammatory Activity. Steroids, 2022, 184, 109042.	0.8	3
153	The Importance of Preliminary Orientation in [4+2]-Cycloadditions of Dienes and Dienophiles with Complex Structures. Mendeleev Communications, 1994, 4, 60-62.	0.6	2
154	Isolation and Chemical Transformations of Vasicinone. Chemistry of Natural Compounds, 2004, 40, 273-275.	0.2	2
155	Xanthones from Halenia corniculata. 3. Preparation of Standard 1-Hydroxy-2,3,4,5-tetramethoxyxanthone. Chemistry of Natural Compounds, 2005, 41, 513-515.	0.2	2
156	Synthesis and crystal structure of 29,30-dibromoallobetulin. Chemistry of Natural Compounds, 2006, 42, 186-188.	0.2	2
157	Synthetic transformations of isoquinoline alkaloids. Synthesis of 1-halo derivatives of endo-ethenotetrahydrothebaine and their behavior in the heck reaction. Russian Journal of Organic Chemistry, 2007, 43, 526-537.	0.3	2
158	Synthetic transformations of isoquinoline alkaloids. Synthesis of new dihydrothebaine-hydroquinone derivatives. Russian Chemical Bulletin, 2007, 56, 1252-1260.	0.4	2
159	Plant coumarins. 4.* Synthesis of N-containing derivatives of oreoselone. Chemistry of Natural Compounds, 2009, 45, 338-345.	0.2	2
160	Synthesis of hybrid compounds derived from diterpene alkaloid lappaconitine. Doklady Chemistry, 2010, 430, 27-31.	0.2	2
161	15,16-Epoxy-3,13(16),14-Neoclerodatrien-17,12:18,19-diolide, a new compound from Galatella punctata. Chemistry of Natural Compounds, 2013, 48, 946-949.	0.2	2
162	Alkaloids of the Flora of Siberia and Altai. XIX. Synthesis of new lappaconitine derivatives on the aromatic ring. Chemistry of Natural Compounds, 2013, 49, 66-69.	0.2	2

#	Article	IF	CITATIONS
163	Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives. ChemistryOpen, 2016, 5, 65-70.	0.9	2
164	Synthesis of 3-trimethylsiloxy-1-(furan-3-yl)butadiene and its reactions with dienophiles. Chemistry of Heterocyclic Compounds, 2016, 52, 364-373.	0.6	2
165	Synthesis and spectroscopic studies of chiral macrocyclic furanolabdanoids connected on the 16,17-positions by 1,2,3-triazole rings with methylene or oxamethylene units. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 84, 197-202.	0.9	2
166	Synthetic transformations of isoquinoline alkaloids: 1-(N-alkyl-1,2,3-triazol-4-yl)-6,18-endo-ethenodihydrothebainehydroquinones and triazolylnaphthohydroquinone-containing benzofuroazocines from thebaine. Chemistry of Heterocyclic Compounds, 2017, 53, 913-919.	0.6	2
167	Synthetic Transformations of Higher Terpenoids. 38.* Synthesis of Conjugates Containing β-Carboline and Tricyclic Diterpenoids. Chemistry of Natural Compounds, 2019, 55, 871-877.	0.2	2
168	Synthetic modifications of carboline alkaloid harmine: synthesis of 8-substituted derivatives. Chemistry of Heterocyclic Compounds, 2019, 55, 135-141.	0.6	2
169	Synthesis and spectroscopic studies of furan-bridged polyazamacrocycles through 15,16-bis((prop-2-ynylamino)methyl)labdatriene transformations. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 245-250.	0.9	2
170	Synthesis and Analgesic Activity Assessment of Furanolabdanoid Conjugates with Glucuronic Acid. Chemistry of Natural Compounds, 2020, 56, 678-687.	0.2	2
171	Modifications of Isoalantolactone Leading to Effective Anti-bacterial and Anti-viral Compounds. Letters in Drug Design and Discovery, 2021, 18, 686-700.	0.4	2
172	A facile approach to hybrid compounds containing a tricyclic diterpenoid and fluorine-substituted heterocycles. Journal of Fluorine Chemistry, 2020, 236, 109554.	0.9	2
173	Synthesis of Macroheterocyclic Compounds with a Furan Bridge Possessing Structural Fragments of 1,2,3-Triazoles and Natural Diterpenoids. Macroheterocycles, 2015, 8, 81-88.	0.9	2
174	Title is missing!. Russian Chemical Bulletin, 2002, 51, 531-534.	0.4	1
175	Title is missing!. Russian Chemical Bulletin, 2002, 51, 1965-1967.	0.4	1
176	Diels-alder reaction with cyclic sulfones. 9.* Synthesis of 10-oxo-1h-tetrahydrofluo-reno[2,1-b]thiophene dioxides*2. Chemistry of Heterocyclic Compounds, 2008, 44, 1220-1228.	0.6	1
177	Syntheses based on anabasine. Russian Chemical Bulletin, 2008, 57, 140-150.	0.4	1
178	Synthesis of diterpene alkaloids of a new structural type from maleopimaric acid. Doklady Chemistry, 2008, 423, 299-304.	0.2	1
179	Synthesis of the first acetylene derivatives of betulonic acid. Doklady Chemistry, 2009, 424, 39-42.	0.2	1
180	Synthetic transformations of higher terpenoids: XXV. Cross coupling of phlomisoic acid methyl ester with alkenes in the presence of oxidants. Russian Journal of Organic Chemistry, 2011, 47, 602-605.	0.3	1

#	Article	IF	CITATIONS
181	Isolation of repin from the aerial part of Centaurea scabiosa. Chemistry of Natural Compounds, 2011, 47, 311-312.	0.2	1
182	Alkaloids from roots of Aconitum monticola. Chemistry of Natural Compounds, 2012, 47, 1032-1034.	0.2	1
183	Synthetic transformations of higher terpenoids: XXXII. Synthesis of 16-alkenyl-substituted labdatrienes by oxidative coupling of methyl phlomisoate with alkenes. Russian Journal of Organic Chemistry, 2013, 49, 1690-1702.	0.3	1
184	Alkaloids of the Flora of Siberia and Altai. XXI.* 5′-(1,2,3-Triazolyl)-Substituted Lappaconitine Derivatives. Chemistry of Natural Compounds, 2015, 51, 1142-1146.	0.2	1
185	Synthetic transformations of higher terpenoids: XXXVI. Synthesis of furanolabdanoid glycoconjugates with a 1,2,3-triazole linker. Russian Journal of Organic Chemistry, 2017, 53, 35-46.	0.3	1
186	Plant Coumarins: XVII. Synthesis and Transformations of 7-Hydroxy-2-oxo-2H-chromene-6-carboxamides. Russian Journal of Organic Chemistry, 2019, 55, 1518-1526.	0.3	1
187	Synthetic studies on tricyclic diterpenoids: convenient synthesis of 16-arylisopimaranes. Monatshefte FA¼r Chemie, 2020, 151, 1817-1827.	0.9	1
188	Synthesis, characterization and anticancer evaluation of nitrogen-substituted 1-(3-aminoprop-1-ynyl)-4-hydroxyanthraquinone derivatives. Medicinal Chemistry Research, 2021, 30, 1541-1556.	1.1	1
189	An Efficient Access to 3,5â€Disubstituted Isoxazoles with Anthranilate Ester Moiety: Alkaloid Lappaconitine – Aryl Conjugates with an Isoxazole Linker. Asian Journal of Organic Chemistry, 2021, 10, 2638.	1.3	1
190	Modification of Biologically Active Plant Metabolites Via the Transition Metal Catalyzed Reactions. Eurasian Chemico-Technological Journal, 2015, 15, 175.	0.3	1
191	Synthesis of Novel Labdanoid-Based Macroheterocycles Using Click-Cycloaddition Reaction Protocol. Macroheterocycles, 2017, 10, 117-122.	0.9	1
192	Highly Selective Gold-Catalyzed Cycloisomerization of Furanolabdanoid Dialkynes with Alkynyl Substituents in the Furan Ring. Current Organic Synthesis, 2018, 15, 1147-1153.	0.7	1
193	Synthetic transformations of sesquiterpene lactones. Controllable synthesis of 11,13-dihydroisoalantolactone azides and 13-(1,2,3-triazolyl)eudesmanolides based on sesquiterpene lactones. Chemistry of Heterocyclic Compounds, 2021, 57, 1116.	0.6	1
194	Investigation of cytotoxic and antioxidative activity of 1,2,3-triazolyl-modified furocoumarins and 2,3-dihydrofurocoumarins. Protoplasma, 2022, 259, 1321-1330.	1.0	1
195	New Nitrogen-Containing Labdanoids from Lambertianic Acid. Doklady Chemistry, 2004, 395, 43-46.	0.2	Ο
196	Molecular structure of 5′-bromolappaconitine. Chemistry of Natural Compounds, 2008, 44, 740-742.	0.2	0
197	Analgesic Properties of New Pyrrolidinomorphinane Derivatives: Revealing Potential Pathways. Natural Product Communications, 2008, 3, 1934578X0800301.	0.2	0
198	Synthesis of quaternary salts of Peganum harmala alkaloids. Chemistry of Natural Compounds, 2009, 45, 601-603.	0.2	0

#	Article	IF	CITATIONS
199	Diels-alder reactions with cyclic sulfones: X. Synthesis of 4-carbamoyl- and 4-hydrazido-substituted hexahydro-1-benzothiophene S,S-dioxides. Russian Journal of Organic Chemistry, 2009, 45, 1546-1554.	0.3	0
200	Synthesis of Betulin Derivatives: N'{N-[3-OXO-20(29)-Lupen-28-OYL]-9-Aminononanoyl}3-Amino-3-Phenylpropionic Acid. Pharmaceutical Chemistry Journal, 2012, 46, 473-477.	0.3	0
201	Alkaloids of the flora of Siberia and Altai: XX. Synthesis of 5-aryl(hetaryl)-substituted anthranilic acid esters. Russian Journal of Organic Chemistry, 2014, 50, 960-972.	0.3	0
202	Cross-copling reaction to access a library of eudesmane-type methylene lactones with quinoline or isoquinoline substituent. Journal of Molecular Structure, 2022, 1247, 131373.	1.8	0
203	New Pinostilbene Analogues Overcome Anthracycline Resistance in Acute Lymphoplastic Leukemia Ex Vivo Blood, 2006, 108, 4403-4403.	0.6	0
204	Synthesis of Anti-Inflammatory Spirostene-Pyrazole Conjugates by a Consecutive Multicomponent Reaction of Diosgenin with Oxalyl Chloride, Arylalkynes and Hydrazines or Hydrazones. Molecules, 2022, 27, 162.	1.7	0