
Jeong-Myeong Ha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2759479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catalysis Communications, 2012, 17, 54-58.	1.6	311
2	Polymorph Selectivity under Nanoscopic Confinement. Journal of the American Chemical Society, 2004, 126, 3382-3383.	6.6	227
3	Manipulating Crystal Growth and Polymorphism by Confinement in Nanoscale Crystallization Chambers. Accounts of Chemical Research, 2012, 45, 414-423.	7.6	162
4	Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to Î ³ -valerolactone. Applied Catalysis B: Environmental, 2019, 241, 588-597.	10.8	153
5	Recent progress in the thermal and catalytic conversion of lignin. Renewable and Sustainable Energy Reviews, 2019, 111, 422-441.	8.2	141
6	A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chemistry, 2010, 2, 1062-1068.	6.6	103
7	Delamination of Layered Zeolite Precursors under Mild Conditions: Synthesis of UCB-1 via Fluoride/Chloride Anion-Promoted Exfoliation. Journal of the American Chemical Society, 2011, 133, 3288-3291.	6.6	98
8	Phase Behavior and Polymorphism of Organic Crystals Confined within Nanoscale Chambers. Crystal Growth and Design, 2009, 9, 4766-4777.	1.4	92
9	Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 2014, 164, 221-231.	4.8	90
10	Identification of site requirements for reduction of 4-nitrophenol using gold nanoparticle catalysts. Catalysis Science and Technology, 2013, 3, 2976.	2.1	83
11	Selective oxygen species for the oxidative coupling of methane. Molecular Catalysis, 2017, 435, 13-23.	1.0	79
12	Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Bioresource Technology, 2017, 234, 424-431.	4.8	79
13	Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. Journal of Industrial and Engineering Chemistry, 2018, 57, 45-54.	2.9	79
14	Catalytic transfer hydrogenation/hydrogenolysis of guaiacol to cyclohexane over bimetallic RuRe/C catalysts. Catalysis Communications, 2016, 86, 113-118.	1.6	78
15	Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods. Energy Conversion and Management, 2014, 86, 371-378.	4.4	73
16	Effective hydrodeoxygenation of lignin-derived phenols using bimetallic RuRe catalysts: Effect of carbon supports. Catalysis Today, 2018, 303, 191-199.	2.2	71
17	Postsynthetic Modification of Gold Nanoparticles with Calix[4]arene Enantiomers: Origin of Chiral Surface Plasmon Resonance. Langmuir, 2009, 25, 153-158.	1.6	68
18	Synthesis and Characterization of Accessible Metal Surfaces in Calixarene-Bound Gold Nanoparticles. Langmuir. 2009. 25. 10548-10553.	1.6	67

#	Article	IF	CITATIONS
19	Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals. Bioresource Technology, 2016, 203, 142-149.	4.8	63
20	Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts. Catalysis Today, 2016, 265, 192-198.	2.2	63
21	Thermotropic Properties of Organic Nanocrystals Embedded in Ultrasmall Crystallization Chambers. Journal of Physical Chemistry B, 2005, 109, 1392-1399.	1.2	60
22	Effects of Carbohydrates on the Hydrodeoxygenation of Lignin-Derived Phenolic Compounds. ACS Catalysis, 2015, 5, 433-437.	5.5	60
23	Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReO _x /ZrO ₂ catalyst: zirconia and rhenium oxide as efficient dehydration promoters. Green Chemistry, 2018, 20, 1472-1483.	4.6	59
24	Production of high carbon number hydrocarbon fuels from a lignin-derived α-O-4 phenolic dimer, benzyl phenyl ether, via isomerization of ether to alcohols on high-surface-area silica-alumina aerogel catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 668-676.	10.8	58
25	Scaled-up production of C2 hydrocarbons by the oxidative coupling of methane over pelletized Na2WO4/Mn/SiO2 catalysts: Observing hot spots for the selective process. Fuel, 2013, 106, 851-857.	3.4	55
26	Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methane. Applied Surface Science, 2018, 429, 55-61.	3.1	50
27	Hydrodeoxygenation of guaiacol on tungstated zirconia supported Ru catalysts. Applied Catalysis A: General, 2017, 543, 10-16.	2.2	49
28	Design and preparation of high-surface-area Cu/ZnO/Al2O3 catalysts using a modified co-precipitation method for the water-gas shift reaction. Applied Catalysis A: General, 2013, 462-463, 220-226.	2.2	48
29	Combined experimental and density functional theory (DFT) studies on the catalyst design for the oxidative coupling of methane. Journal of Catalysis, 2019, 375, 478-492.	3.1	45
30	Oxidative Coupling of Methane Using Mg/Ti-Doped SiO ₂ -Supported Na ₂ WO ₄ /Mn Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 3667-3674.	3.2	44
31	Heteropolyacid catalysts for Diels-Alder cycloaddition of 2,5-dimethylfuran and ethylene to renewable p -xylene. Catalysis Today, 2017, 293-294, 167-175.	2.2	44
32	Fast hydropyrolysis of biomass Conversion: A comparative review. Bioresource Technology, 2021, 342, 126067.	4.8	44
33	Transition metal-doped TiO2 nanowire catalysts for the oxidative coupling of methane. Catalysis Communications, 2014, 50, 54-58.	1.6	42
34	Production of phenolic hydrocarbons using catalytic depolymerization of empty fruit bunch (EFB)-derived organosolv lignin on HÎ2-supported Ru. Chemical Engineering Journal, 2017, 309, 187-196.	6.6	42
35	Oxidative coupling of methane over LaAlO3 perovskite catalysts prepared by a co-precipitation method: Effect of co-precipitation pH value. Journal of Energy Chemistry, 2019, 35, 1-8.	7.1	41
36	Oxidative coupling of methane to C2 hydrocarbons on the Mg–Ti mixed oxide-supported catalysts at the lower reaction temperature: Role of surface oxygen atoms. Applied Catalysis A: General, 2013, 464-465, 68-77.	2.2	39

#	Article	IF	CITATIONS
37	Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. Journal of Industrial and Engineering Chemistry, 2017, 52, 59-65.	2.9	39
38	Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: Reducibility of metal additives to manipulate the catalytic activity. Applied Catalysis A: General, 2018, 562, 114-119.	2.2	39
39	Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Molecular Catalysis, 2020, 489, 110925.	1.0	36
40	Mercaptocalixarene-Capped Gold Nanoparticles via Postsynthetic Modification and Direct Synthesis: Effect of Calixarene Cavity-Metal Interactions. Journal of Physical Chemistry C, 2009, 113, 1137-1142.	1.5	35
41	Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Applied Catalysis A: General, 2015, 506, 288-293.	2.2	35
42	Two-step continuous upgrading of sawdust pyrolysis oil to deoxygenated hydrocarbons using hydrotreating and hydrodeoxygenating catalysts. Catalysis Today, 2018, 303, 130-135.	2.2	34
43	Continuous pyrolysis of organosolv lignin and application of biochar on gasification of high density polyethylene. Applied Energy, 2019, 255, 113801.	5.1	34
44	Low-temperature oxidative coupling of methane using alkaline earth metal oxide-supported perovskites. Catalysis Today, 2020, 352, 127-133.	2.2	34
45	High-quality and phenolic monomer-rich bio-oil production from lignin in supercritical ethanol over synergistic Ru and Mg-Zr-oxide catalysts. Chemical Engineering Journal, 2020, 396, 125175.	6.6	34
46	Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in-situ red mud and ex-situ HZSM-5 in two-step catalytic micro reactor. Applied Surface Science, 2020, 511, 145521.	3.1	34
47	Waterâ€Assisted Selective Hydrodeoxygenation of Ligninâ€Derived Guaiacol to Monooxygenates. ChemCatChem, 2015, 7, 2669-2674.	1.8	32
48	Upgrading of sawdust pyrolysis oil to hydrocarbon fuels using tungstate-zirconia-supported Ru catalysts with less formation of cokes. Journal of Industrial and Engineering Chemistry, 2017, 56, 74-81.	2.9	31
49	Preparation of LaAlO3 perovskite catalysts by simple solid-state method for oxidative coupling of methane. Catalysis Today, 2020, 352, 134-139.	2.2	30
50	Production of high-energy-density fuels by catalytic β-pinene dimerization: Effects of the catalyst surface acidity and pore width on selective dimer production. Energy Conversion and Management, 2016, 116, 72-79.	4.4	29
51	Water-promoted selective heterogeneous catalytic trimerization of xylose-derived 2-methylfuran to diesel precursors. Applied Catalysis A: General, 2015, 495, 200-205.	2.2	27
52	Production of phenolic hydrocarbons from organosolv lignin and lignocellulose feedstocks of hardwood, softwood, grass and agricultural waste. Journal of Industrial and Engineering Chemistry, 2019, 69, 304-314.	2.9	27
53	Alignment of Organic Crystals under Nanoscale Confinement. Crystal Growth and Design, 2012, 12, 4494-4504.	1.4	26
54	One-pot catalytic reaction to produce high-carbon-number dimeric deoxygenated hydrocarbons from lignin-derived monophenyl vanillin using Al 2 O 3 -cogelled Ru nanoparticles. Applied Catalysis A: General, 2016, 524, 243-250.	2.2	26

Jeong-Myeong Ha

#	Article	IF	CITATIONS
55	Layered MWW zeolite-supported Rh catalysts for the hydrodeoxygenation of lignin model compounds. Catalysis Today, 2017, 293-294, 142-150.	2.2	26
56	Selective hydrodeoxygenation of biomass pyrolysis oil and lignin-derived oxygenates to cyclic alcohols using the bimetallic NiFe core-shell supported on TiO2. Chemical Engineering Journal, 2022, 446, 136578.	6.6	25
57	Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: Complete hydrodeoxygenation of vanillin. Journal of Hazardous Materials, 2022, 423, 126525.	6.5	24
58	Catalytic dehydrofluorination of 1,1,1,2,3-pentafluoropropane (HFC-245eb) to 2,3,3,3-tetrafluoropropene (HFO-1234yf) using in-situ fluorinated chromium oxyfluoride catalyst. Catalysis Today, 2017, 293-294, 42-48.	2.2	23
59	A K2NiF4-type La2Li0.5Al0.5O4 catalyst for the oxidative coupling of methane (OCM). Catalysis Communications, 2019, 128, 105702.	1.6	22
60	Formation of defect site on ZIF-7 and its effect on the methoxycarbonylation of aniline with dimethyl carbonate. Journal of Catalysis, 2019, 380, 297-306.	3.1	21
61	Production of deoxygenated high carbon number hydrocarbons from furan condensates: Hydrodeoxygenation of biomass-based oxygenates. Chemical Engineering Journal, 2019, 377, 119985.	6.6	21
62	Study on the unsteady state oxidative coupling of methane: effects of oxygen species from O ₂ , surface lattice oxygen, and CO ₂ on the C ₂₊ selectivity. RSC Advances, 2020, 10, 35889-35897.	1.7	21
63	On the synthesis and characterization of all-silica CHA zeolite particles. Microporous and Mesoporous Materials, 2014, 184, 47-54.	2.2	20
64	Hydrothermal Liquefaction of Concentrated Acid Hydrolysis Lignin in a Bench-Scale Continuous Stirred Tank Reactor. Energy & Fuels, 2019, 33, 6421-6428.	2.5	20
65	Improved hydrodeoxygenation of lignin-derived oxygenates and biomass pyrolysis oil into hydrocarbon fuels using titania-supported nickel phosphide catalysts. Energy Conversion and Management, 2022, 266, 115822.	4.4	18
66	Highly durable Pt-supported niobia–silica aerogel catalysts in the aqueous-phase hydrodeoxygenation of 1-propanol. Catalysis Communications, 2012, 29, 40-47.	1.6	17
67	The roles of CeyZr1â^'yO2 in propane dehydrogenation: Enhancing catalytic stability and decreasing coke combustion temperature. Applied Catalysis A: General, 2012, 443-444, 59-66.	2.2	17
68	Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts. Catalysts, 2019, 9, 363.	1.6	17
69	Condensation of pentose-derived furan compounds to C15 fuel precursors using supported phosphotungstic acid catalysts: Strategy for designing heterogeneous acid catalysts based on the acid strength and pore structures. Applied Catalysis A: General, 2019, 570, 238-244.	2.2	17
70	Acid-treated waste red mud as an efficient catalyst for catalytic fast copyrolysis of lignin and polyproylene and ozone-catalytic conversion of toluene. Environmental Research, 2020, 191, 110149.	3.7	17
71	Plasma assisted oxidative coupling of methane (OCM) over Ag/SiO2 and subsequent regeneration at low temperature. Applied Catalysis A: General, 2018, 557, 39-45.	2.2	16
72	Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4-SO3. Journal of Catalysis, 2019, 374, 230-236	3.1	16

#	Article	IF	CITATIONS
73	Improved activity of a CaCO3-supported Ru catalyst for the hydrodeoxygenation of eugenol as a model lignin-derived phenolic compound. Catalysis Communications, 2019, 127, 45-50.	1.6	15
74	A study on active sites of A2BO4 catalysts with perovskite-like structures in oxidative coupling of methane. Molecular Catalysis, 2021, 506, 111548.	1.0	15
75	Diels-Alder cycloaddition of oxidized furans and ethylene over supported heteropolyacid catalysts for renewable terephthalic acid. Catalysis Today, 2020, 351, 37-43.	2.2	14
76	Hybrid catalysts containing Ba, Ti, Mn, Na, and W for the low-temperature oxidative coupling of methane. Applied Catalysis B: Environmental, 2021, 298, 120553.	10.8	14
77	Direct conversion of lignin to high-quality biofuels by carbon dioxide-assisted hydrolysis combined with transfer hydrogenolysis over supported ruthenium catalysts. Energy Conversion and Management, 2022, 261, 115607.	4.4	14
78	Phase Transformation of Adefovir Dipivoxil/Succinic Acid Cocrystals Regulated by Polymeric Additives. Polymers, 2014, 6, 1-11.	2.0	13
79	Bimetallic <scp>Niâ€Re</scp> catalysts for the efficient hydrodeoxygenation of biomassâ€derived phenols. International Journal of Energy Research, 2021, 45, 16349-16361.	2.2	13
80	Enhancement in the metal efficiency of Ru/TiO2 catalyst for guaiacol hydrogenation via hydrogen spillover in the liquid phase. Journal of Catalysis, 2022, 410, 93-102.	3.1	13
81	Effects of lignin on the ionic-liquid assisted catalytic hydrolysis of cellulose: chemical inhibition by lignin. Cellulose, 2013, 20, 2349-2358.	2.4	12
82	The production of lactic acid from chemi-thermomechanical pulps using a chemo-catalytic approach. Bioresource Technology, 2021, 324, 124664.	4.8	12
83	Accessibility in Calix[8]arene-Bound Gold Nanoparticles: Crucial Role of Induced-Fit Binding. Journal of Physical Chemistry C, 2010, 114, 16060-16070.	1.5	11
84	Supercritical-phase-assisted highly selective and active catalytic hydrodechlorination of the ozone-depleting refrigerant CHClF2. Chemical Engineering Journal, 2012, 213, 346-355.	6.6	11
85	Effects of sintering-resistance and large metal–support interface of alumina nanorod-stabilized Pt nanoparticle catalysts on the improved high temperature water gas shift reaction activity. Catalysis Communications, 2014, 56, 11-16.	1.6	11
86	Continuous-flow production of petroleum-replacing fuels from highly viscous Kraft lignin pyrolysis oil using its hydrocracked oil as a solvent. Energy Conversion and Management, 2020, 213, 112728.	4.4	11
87	Investigation of the activity and selectivity of supported rhenium catalysts for the hydrodeoxygenation of 2-methoxyphenol. Catalysis Today, 2021, 375, 164-173.	2.2	11
88	Stabilization of acid-rich bio-oil by catalytic mild hydrotreating. Environmental Pollution, 2021, 272, 116180.	3.7	11
89	Study of Ag2O/TiO2 nanowires synthesis and characterization for heterogeneous reduction reaction catalysis of 4-nitrophenol. Nano Structures Nano Objects, 2021, 26, 100719.	1.9	11
90	Microwave-assisted phenolation of acid-insoluble Klason lignin and its application in adhesion. Green Chemistry, 2022, 24, 2051-2061.	4.6	11

#	Article	IF	CITATIONS
91	Production of aromatic compounds from oil palm empty fruit bunches by hydro- and solvothermolysis. Industrial Crops and Products, 2015, 76, 104-111.	2.5	10
92	Role of Anhydride in the Ketonization of Carboxylic Acid: Kinetic Study on Dimerization of Hexanoic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 872-880.	1.8	10
93	Condensation of furans for the production of diesel precursors: A study on the effects of surface acid sites of sulfonated carbon catalysts. Catalysis Today, 2021, 375, 155-163.	2.2	9
94	Metal/acid bifunctional catalysts for the reductive catalytic fractionation of lignocellulose into phenols and holocellulose. Journal of Environmental Chemical Engineering, 2022, 10, 108085.	3.3	9
95	Highly Dispersed Pt Nanoparticles for the Production of Aromatic Hydrocarbons by the Catalytic Degrading of Alkali Lignin. Journal of Nanoscience and Nanotechnology, 2016, 16, 4565-4569.	0.9	8
96	Catalytic Depolymerization of Alkali Lignin Using Supported Pt Nanoparticle Catalysts. Journal of Nanoscience and Nanotechnology, 2016, 16, 4570-4575.	0.9	8
97	Catalytic conversion of waste corrugated cardboard into lactic acid using lanthanide triflates. Waste Management, 2022, 144, 41-48.	3.7	7
98	The Effect of Tin–Support Interaction on Catalytic Stability over Pt–Sn/xAl–SBA-15 Catalysts for Propane Dehydrogenation. Catalysis Letters, 2012, 142, 838-844.	1.4	6
99	SiO2@MnOx@Na2WO4@SiO2 core–shell-derived catalyst for oxidative coupling of methane. RSC Advances, 2020, 10, 37749-37756.	1.7	6
100	High-temperature hydrodechlorination of ozone-depleting chlorodifluoromethane (HCFC-22) on supported Pd and Ni catalysts. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 989-996.	0.9	5
101	One-pot synthesis of 3D-ZIF-7 supported on 2D-Zn–Benzimidazole–Acetate and its catalytic activity in the methoxycarbonylation of aniline with dimethyl carbonate. Journal of Industrial and Engineering Chemistry, 2021, 99, 380-387.	2.9	5
102	One-pot selective production of deoxygenated monomeric, dimeric, and trimeric hydrocarbons from xylose-derived 2-methylfuran using multifunctional tungstate-zirconia-supported Ru, Pd, and Ni catalysts. Chemical Engineering Journal, 2022, 441, 135581.	6.6	5
103	Bis[(2,2-dimethylpropanoyloxy)methyl] {[2-(6-amino-9 <i>H</i> -purin-9-yl)ethoxy]methyl}phosphonate–succinic acid (2/1). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o809-o810.	0.2	4
104	Improved catalytic depolymerization of lignin waste using carbohydrate derivatives. Environmental Pollution, 2021, 268, 115674.	3.7	4
105	Enantiotropic phase transition and twinning in 2,2,3,3,4,4-hexafluoropentane-1,5-diol. Acta Crystallographica Section C: Crystal Structure Communications, 2009, 65, o388-o395.	0.4	3
106	Process analysis for biphasic dehydration of xylose: effects of solvents on the purification of furfural. Biofuels, 2022, 13, 63-67.	1.4	3
107	Upgrading of sulfur ontaining biogas into high quality fuel via oxidative coupling of methane. International Journal of Energy Research, 2021, 45, 19363.	2.2	3
108	Roles of metal and acid sites in the reductive depolymerization of concentrated lignin over supported Pd catalysts. Catalysis Today, 2023, 411-412, 113844.	2.2	2

#	Article	IF	CITATIONS
109	Na2WO4/Mn/SiO2 Catalyst Pellets for Upgrading H2S-Containing Biogas via the Oxidative Coupling of Methane. Catalysts, 2021, 11, 1301.	1.6	1