Seiji Shirakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2759179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in Asymmetric Phaseâ€Transfer Reactions. Angewandte Chemie - International Edition, 2013, 52, 4312-4348.	13.8	616
2	Surfactant-Type BrÃ,nsted Acid Catalyzed Dehydrative Nucleophilic Substitutions of Alcohols in Water. Organic Letters, 2007, 9, 311-314.	4.6	233
3	Enantioselective Base-Free Phase-Transfer Reaction in Water-Rich Solvent. Journal of the American Chemical Society, 2009, 131, 16620-16621.	13.7	218
4	Powerful Chiral Phase-Transfer Catalysts for the Asymmetric Synthesis of ?-Alkyl- and ?,?-Dialkyl-?-amino Acids. Angewandte Chemie - International Edition, 2005, 44, 1549-1551.	13.8	209
5	Catalytic Asymmetric Synthesis of Axially Chiral <i>o</i> -lodoanilides by Phase-Transfer Catalyzed Alkylations. Journal of the American Chemical Society, 2012, 134, 916-919.	13.7	151
6	Carboxylic Acid Catalyzed Three-Component Aza-Friedelâ^'Crafts Reactions in Water for the Synthesis of 3-Substituted Indoles. Organic Letters, 2006, 8, 4939-4942.	4.6	129
7	Chiral quaternary phosphonium salts as phase-transfer catalysts for environmentally benign asymmetric transformations. Green Chemistry, 2016, 18, 331-341.	9.0	128
8	Design of bifunctional quaternary phosphonium salt catalysts for CO ₂ fixation reaction with epoxides under mild conditions. Green Chemistry, 2016, 18, 4611-4615.	9.0	121
9	Chiral bifunctional phase transfer catalysts for asymmetric fluorination of β-keto esters. Chemical Communications, 2010, 46, 321-323.	4.1	119
10	Kinetic Resolution of Axially Chiral 2â€Aminoâ€1,1′â€Biaryls by Phaseâ€Transferâ€Catalyzed Nâ€Allylation. Angewandte Chemie - International Edition, 2013, 52, 14200-14203.	13.8	118
11	A new generation of chiral phase-transfer catalysts. Organic and Biomolecular Chemistry, 2016, 14, 5367-5376.	2.8	115
12	Novel Water-Soluble Calix[4]arene Ligands with Phosphane-Containing Groups for Dual Functional Metal-Complex Catalysts: The Biphasic Hydroformylation of Water-Insoluble Olefins. Angewandte Chemie - International Edition, 2000, 39, 1256-1259.	13.8	106
13	A Simple and General Chiral Silicon Lewis Acid for Asymmetric Synthesis:Â Highly Enantioselective [3 + 2] Acylhydrazoneâ^'Enol Ether Cycloadditions. Journal of the American Chemical Society, 2005, 127, 9974-9975.	13.7	101
14	Catalytic Asymmetric Synthesis of 3,3′â€Diaryloxindoles as Triarylmethanes with a Chiral Allâ€Carbon Quaternary Center: Phaseâ€Transferâ€Catalyzed S _N Ar Reaction. Angewandte Chemie - International Edition, 2014, 53, 6220-6223.	13.8	99
15	Potassium Iodide–Tetraethylene Glycol Complex as a Practical Catalyst for CO ₂ Fixation Reactions with Epoxides under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 2836-2840.	6.7	99
16	Design of a Novel Inherently Chiral Calix[4]arene for Chiral Molecular Recognition. Organic Letters, 2007, 9, 3117-3119.	4.6	98
17	Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds. Chemistry - an Asian Journal, 2016, 11, 330-341.	3.3	97
18	Design of Chiral Bifunctional Quaternary Phosphonium Bromide Catalysts Possessing an Amide Moiety. Organic Letters, 2013, 15, 3350-3353.	4.6	95

Seiji Shirakawa

#	Article	IF	CITATIONS
19	Enantioselective Friedelâ^ Crafts Alkylations with Benzoylhydrazones Promoted by a Simple Strained Silacycle Reagent. Journal of the American Chemical Society, 2005, 127, 2858-2859.	13.7	93
20	Triethylamine Hydroiodide as a Simple Yet Effective Bifunctional Catalyst for CO ₂ Fixation Reactions with Epoxides under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 7295-7301.	6.7	89
21	Efficient approach for the design of effective chiral quaternary phosphonium salts in asymmetric conjugate additions. Chemical Science, 2013, 4, 2248.	7.4	82
22	Tetraalkylammonium Salts as Hydrogenâ€Bonding Catalysts. Angewandte Chemie - International Edition, 2015, 54, 15767-15770.	13.8	82
23	Combinatorial Design of Simplified Highâ€Performance Chiral Phaseâ€Transfer Catalysts for Practical Asymmetric Synthesis of αâ€Alkyl―and α,αâ€Dialkylâ€Î±â€Amino Acids. Chemistry - an Asian Journal, 2008, 3,	1902-171	4. ⁸¹
24	Asymmetric Neutral Amination of Nitroolefins Catalyzed by Chiral Bifunctional Ammonium Salts in Waterâ€Rich Biphasic Solvent. Angewandte Chemie - International Edition, 2011, 50, 5327-5330.	13.8	76
25	Diastereo- and enantioselective conjugate addition of α-substituted nitroacetates to maleimides under base-free neutral phase-transfer conditions. Chemical Communications, 2011, 47, 10557.	4.1	75
26	Dramatic Rate Enhancement of Asymmetric Phase-Transfer-Catalyzed Alkylations. Angewandte Chemie - International Edition, 2005, 44, 625-628.	13.8	67
27	Synthesis and Resolution of a Multifunctional Inherently Chiral Calix[4]arene with an ABCD Substitution Pattern at the Wide Rim: The Effect of a Multifunctional Structure in the Organocatalyst on Enantioselectivity in Asymmetric Reactions. Journal of Organic Chemistry, 2009, 74, 1288-1296.	3.2	67
28	The direct catalytic asymmetric aldol reaction of α-substituted nitroacetates with aqueous formaldehyde under base-free neutral phase-transfer conditions. Organic and Biomolecular Chemistry, 2012, 10, 5753.	2.8	66
29	Development of a Recyclable Fluorous Chiral Phase-Transfer Catalyst:  Application to the Catalytic Asymmetric Synthesis of α-Amino Acids. Organic Letters, 2004, 6, 1429-1431.	4.6	60
30	Phaseâ€Transferâ€Catalyzed Asymmetric S _N Ar Reaction of αâ€Amino Acid Derivatives with Arene Chromium Complexes. Angewandte Chemie - International Edition, 2015, 54, 838-840.	13.8	60
31	Water-soluble calixarenes as new inverse phase-transfer catalysts. Their application to aldol-type condensation and Michael addition reactions in water. Tetrahedron, 2001, 57, 6169-6173.	1.9	56
32	Synthesis, Optical Resolution and Enantiomeric Recognition Ability of Novel, Inherently Chiral Calix[4]arenes: Trial Application to Asymmetric Reactions as Organocatalysts. European Journal of Organic Chemistry, 2008, 2008, 5957-5964.	2.4	56
33	Phase-Transfer-Catalyzed Asymmetric Conjugate Cyanation of Alkylidenemalonates with KCN in the Presence of a BrÃ,nsted Acid Additive. Organic Letters, 2013, 15, 1230-1233.	4.6	49
34	Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of α-alkyl-α-amino acids. Tetrahedron Letters, 2008, 49, 2026-2030.	1.4	48
35	Synthesis of an Inherently Chiral Calix[4]arene Amino Acid and Its Derivatives: Their Application to Asymmetric Reactions as Organocatalysts. European Journal of Organic Chemistry, 2009, 2009, 1916-1924.	2.4	48
36	Efficient asymmetric synthesis of spiro-2(3H)-furanones via phase-transfer-catalyzed alkynylation. Organic and Biomolecular Chemistry, 2014, 12, 5388-5392.	2.8	44

Seiji Shirakawa

#	Article	IF	CITATIONS
37	Asymmetric phase-transfer reactions under base-free neutral conditions. Tetrahedron Letters, 2014, 55, 3833-3839.	1.4	41
38	Hydrogen-bonding catalysis of sulfonium salts. Chemical Communications, 2017, 53, 119-122.	4.1	40
39	BINOL-derived bifunctional sulfide catalysts for asymmetric synthesis of 3,3-disubstituted phthalides <i>via</i> bromolactonization. Organic and Biomolecular Chemistry, 2019, 17, 3747-3751.	2.8	40
40	Hydrogen-Bond-Promoted C-C Bond-Forming Reaction: Catalyst-Free Michael Addition Reactions in Ethanol. Synlett, 2007, 2007, 3160-3164.	1.8	39
41	Phaseâ€Transferâ€Catalyzed Asymmetric Synthesis of Axially Chiral Anilides. Chemistry - an Asian Journal, 2013, 8, 3214-3221.	3.3	39
42	Chiral Tertiary Sulfonium Salts as Effective Catalysts for Asymmetric Baseâ€Free Neutral Phaseâ€Transfer Reactions. Angewandte Chemie - International Edition, 2017, 56, 4819-4823.	13.8	39
43	Improved design of inherently chiral calix[4]arenes as organocatalysts. New Journal of Chemistry, 2010, 34, 1217.	2.8	36
44	A Baseâ€Free Neutral Phaseâ€Transfer Reaction System. Chemistry - an Asian Journal, 2014, 9, 1586-1593.	3.3	36
45	Hydrogenâ€Bonding Catalysis of Alkylâ€Onium Salts. Chemistry - an Asian Journal, 2020, 15, 463-472.	3.3	36
46	Rhodium-catalyzed biphasic hydroformylation of 4-octene using water-soluble calix[4]arene-phosphine ligands. New Journal of Chemistry, 2001, 25, 777-779.	2.8	34
47	Design of Chiral Bifunctional Dialkyl Sulfide Catalysts for Regioâ€, Diastereoâ€, and Enantioselective Bromolactonization. Chemistry - A European Journal, 2018, 24, 16747-16752.	3.3	34
48	Phaseâ€Transferâ€Catalyzed Asymmetric αâ€Arylation of αâ€Amino Acid Derivatives. Asian Journal of Organic Chemistry, 2014, 3, 433-436.	2.7	33
49	Effect of BrÃ,nsted acid co-catalyst in asymmetric conjugate addition of 3-aryloxindoles to maleimide under base-free phase-transfer conditions. Tetrahedron, 2014, 70, 7128-7132.	1.9	31
50	Catalytic asymmetric synthesis of 1,1-disubstituted tetrahydro-Î ² -carbolines by phase-transfer catalyzed alkylations. Chemical Communications, 2011, 47, 1515-1517.	4.1	30
51	Hydrogenâ€Bonding Catalysis of Tetraalkylammonium Salts in an Azaâ€Diels–Alder Reaction. Chemistry - an Asian Journal, 2016, 11, 2126-2129.	3.3	30
52	Design of Binaphthylâ€Modified Symmetrical Chiral Phaseâ€Transfer Catalysts: Substituent Effect of 4,4′,6,6′â€Positions of Binaphthyl Rings in the Asymmetric Alkylation of a Glycine Derivative. Chemistry - an Asian Journal, 2007, 2, 1276-1281.	3.3	27
53	Direct Asymmetric Aminoxylation Reaction Catalyzed by Axially Chiral Amino Acids. Chemistry Letters, 2008, 37, 250-251.	1.3	27
54	Phase-Transfer Catalyzed Asymmetric Conjugate Additions of Î ² -Ketoesters to Acetylenic Ketones. Organic Process Research and Development, 2010, 14, 684-686.	2.7	26

SEIJI SHIRAKAWA

#	Article	IF	CITATIONS
55	Phaseâ€Transferâ€Catalyzed Asymmetric Synthesis of 1,1â€Disubstituted Tetrahydroisoquinolines. Advanced Synthesis and Catalysis, 2011, 353, 2614-2618.	4.3	25
56	Chiral Bifunctional Selenide Catalysts for Asymmetric Bromolactonization. Asian Journal of Organic Chemistry, 2020, 9, 192-196.	2.7	23
57	New chiral phase-transfer catalysts possessing a 6,6′-bridged ring on the biphenyl unit: application to the synthesis of α,α-dialkyl-α-amino acids. Tetrahedron Letters, 2012, 53, 3739-3741.	1.4	22
58	Design of new polyamine-based chiral phase-transfer catalysts for the enantioselective synthesis of phenylalanine. Tetrahedron: Asymmetry, 2004, 15, 1243-1245.	1.8	21
59	Efficient Asymmetric Synthesis of a Bicyclic Amino Acid as a Core Structure of Telaprevir. ChemCatChem, 2012, 4, 980-982.	3.7	21
60	New Neutral Reaction System with Crown Ether–KCl Complexes in Aqueous Solution. Chemistry - A European Journal, 2012, 18, 8588-8590.	3.3	19
61	Hexameric Capsule of a Resorcinarene Bearing Fluorous Feet as a Selfâ€Assembled Nanoreactor: A Diels–Alder Reaction in a Fluorous Biphasic System. European Journal of Organic Chemistry, 2013, 2013, 4734-4737.	2.4	19
62	Catalytic Asymmetric Synthesis of 3â€5ubstituted Proline Derivatives by Using Phaseâ€Transferâ€Catalyzed Conjugate Addition. Asian Journal of Organic Chemistry, 2012, 1, 180-186.	2.7	17
63	Catalyst-Controlled Regio- and Stereoselective Bromolactonization with Chiral Bifunctional Sulfides. Synlett, 2019, 30, 1662-1666.	1.8	17
64	Chiral bifunctional sulfide-catalyzed asymmetric bromoaminocyclizations. Organic and Biomolecular Chemistry, 2020, 18, 3367-3373.	2.8	17
65	Tris(2,6-diphenylbenzyl)amine (TDA) and tris(2,6-diphenylbenzyl)phosphine (TDP) with unique bowl-shaped structures: synthetic application of functionalized TDA to chemoselective silylation of benzylic alcohols. Tetrahedron Letters, 2001, 42, 5467-5471.	1.4	16
66	Chiral Bifunctional Sulfide atalyzed Highly Enantioselective Bromolactonizations of 4â€Pentenoic Acids. Asian Journal of Organic Chemistry, 2021, 10, 1444-1448.	2.7	16
67	Chiral Tertiary Sulfonium Salts as Effective Catalysts for Asymmetric Baseâ€Free Neutral Phaseâ€Transfer Reactions. Angewandte Chemie, 2017, 129, 4897-4901.	2.0	15
68	Asymmetric Catalysis of Chiral Bifunctional Selenides and Selenonium Salts Bearing a Urea Group. Asian Journal of Organic Chemistry, 2021, 10, 655-659.	2.7	15
69	Chiral Organotin Hydride Catalyzed Enantioselective Radical Cyclization of Aldehydes. Asian Journal of Organic Chemistry, 2013, 2, 916-919.	2.7	14
70	A highly chemoselective Mukaiyama aldol reaction of saturated aldehyde over unsaturated aldehyde with enol tris(2,6-diphenylbenzyl)silyl ether. Tetrahedron Letters, 2002, 43, 1469-1472.	1.4	12
71	Phase-transfer-catalyzed asymmetric desymmetrizations of cyclopentanones. Organic Chemistry Frontiers, 2015, 2, 336-339.	4.5	12
72	Kl–Tetraethylene Glycol Complex as an Effective Catalyst for the Synthesis of Cyclic Thiocarbonates from Epoxides and CS ₂ . European Journal of Organic Chemistry, 2018, 2018, 2022-2027.	2.4	11

SEIJI SHIRAKAWA

#	Article	IF	CITATIONS
73	Efficient asymmetric syntheses of α-quaternary lactones and esters through chiral bifunctional sulfide-catalyzed desymmetrizing bromolactonization of α,α-diallyl carboxylic acids. Chemical Communications, 2021, 57, 10907-10910.	4.1	11
74	Environmentally Benign Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide Using Binary and Bifunctional Catalysts. Heterocycles, 2021, 103, 94.	0.7	10
75	TrialkylsulfoniumÂand TetraalkylammoniumÂSalts as Hydrogen-Bonding Catalysts in an Aza-Diels-Alder Reaction: Experimental and Computational Studies. Heterocycles, 2020, 101, 580.	0.7	10
76	Triethylamine Hydroiodide as a Bifunctional Catalyst for the Solventâ€Free Synthesis of 2â€Oxazolidinones. European Journal of Organic Chemistry, 2020, 2020, 4937-4941.	2.4	9
77	Efficient methods for the synthesis of chiral 2â€oxazolidinones as pharmaceutical building blocks. Chirality, 2022, 34, 915-924.	2.6	9
78	Dehydrative Amination of Alcohols in Water Using a Water-Soluble Calix[4]resorcinarene Sulfonic Acid. Synlett, 2008, 2008, 1539-1542.	1.8	8
79	Chiral Quaternary Ammonium Fluorides for Asymmetric Synthesis. , 0, , 189-206.		8
80	Non-Enzymatic Kinetic Resolution and Desymmetrization of α-Quaternary Carboxylic Acids via Chiral Bifunctional Sulfide-Catalyzed Bromolactonization. Bulletin of the Chemical Society of Japan, 2022, 95, 52-58.	3.2	8
81	Synthesis and optical resolution of an inherently chiral calix[4]arene amino acid. New Journal of Chemistry, 2008, 32, 1835.	2.8	7
82	Synthetic utility of bowl-shaped tris(2,6-diphenyl-benzyl)silyl glyoxylate as a stable glyoxylate: application to highly diastereoselective aldol reactions. Tetrahedron Letters, 2003, 44, 281-284.	1.4	5
83	Ag(I)-Catalyzed Michael Additions of β-Ketoesters to Nitroalkenes in Water: Remarkable Effect of Water as a Reaction Medium on Reaction Rates. Synlett, 2006, 2006, 1410-1412.	1.8	4
84	A New Strategy for Organocatalyzed Asymmetric Synthesis of BINOL Derivatives. CheM, 2017, 2, 329-331.	11.7	4
85	Development of New Catalytic Systems for Environmentally Benign Synthesis of Cyclic Carbonates. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 791-799.	0.1	3
86	Discovery and Evolution of Base-Free Neutral Phase-Transfer Reaction System. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1374-1383.	0.1	1