
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2759144/publications.pdf Version: 2024-02-01

ADDIL F RESIDE

#	Article	IF	CITATIONS
1	Accelerated shifts in terrestrial life zones under rapid climate change. Global Change Biology, 2022, 28, 918-935.	4.2	24
2	Creating past habitat maps to quantify local extirpation of Australian threatened birds. Environmental Research Letters, 2022, 17, 024032.	2.2	8
3	Saving species beyond the protected area fence: Threats must be managed across multiple land tenure types to secure Australia's endangered species. Conservation Science and Practice, 2022, 4, .	0.9	14
4	The minimum land area requiring conservation attention to safeguard biodiversity. Science, 2022, 376, 1094-1101.	6.0	85
5	Communicating the true challenges of saving species: response to Wiedenfeld et al Conservation Biology, 2022, 36, .	2.4	4
6	A nationalâ€scale dataset for threats impacting Australia's imperiled flora and fauna. Ecology and Evolution, 2021, 11, 11749-11761.	0.8	27
7	Evaluating the evidence of culling a native species for conservation benefits. Conservation Science and Practice, 2021, 3, e549.	0.9	5
8	Vulnerable species and ecosystems are falling through the cracks of environmental impact assessments. Conservation Letters, 2020, 13, e12694.	2.8	9
9	Impact of 2019–2020 mega-fires on Australian fauna habitat. Nature Ecology and Evolution, 2020, 4, 1321-1326.	3.4	209
10	Transferable, predictive models of benthic communities informs marine spatial planning in a remote and dataâ€poor region. Conservation Science and Practice, 2020, 2, e251.	0.9	6
11	Conserving the endangered Black-throated Finch southern subspecies: what do we need to know?. Emu, 2019, 119, 331-345.	0.2	3
12	Corrigendum to: The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 2019, 25, 328.	0.5	19
13	Collaboration across boundaries in the Amazon. Science, 2019, 366, 699-700.	6.0	11
14	Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conservation Science and Practice, 2019, 1, e117.	0.9	53
15	How to send a finch extinct. Environmental Science and Policy, 2019, 94, 163-173.	2.4	26
16	Climate change and biodiversity in Australia: a systematic modelling approach to nationwide species distributions. Australasian Journal of Environmental Management, 2019, 26, 112-123.	0.6	13
17	Retention and restoration priorities for climate adaptation in a multi-use landscape. Global Ecology and Conservation, 2019, 18, e00649.	1.0	17
18	Persistence through tough times: fixed and shifting refuges in threatened species conservation. Biodiversity and Conservation, 2019, 28, 1303-1330.	1.2	40

#	Article	IF	CITATIONS
19	Metrics of progress in the understanding and management of threats to Australian birds. Conservation Biology, 2019, 33, 456-468.	2.4	31
20	Beyond the model: expert knowledge improves predictions of species' fates under climate change. Ecological Applications, 2019, 29, e01824.	1.8	42
21	The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 2019, 25, 231.	0.5	72
22	Adaptation pathways for conservation law and policy. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e555.	3.6	16
23	Nutrient subsidy indicators predict the presence of an avian mobile-link species. Ecological Indicators, 2018, 89, 507-515.	2.6	5
24	Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. Journal for Nature Conservation, 2018, 41, 106-115.	0.8	21
25	Adapting systematic conservation planning for climate change. Biodiversity and Conservation, 2018, 27, 1-29.	1.2	109
26	Stable isotopes reveal opportunistic foraging in a spatiotemporally heterogeneous environment: Bird assemblages in mangrove forests. PLoS ONE, 2018, 13, e0206145.	1.1	5
27	Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conservation Biology, 2018, 24, 157.	0.5	78
28	Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biological Conservation, 2017, 207, 9-16.	1.9	42
29	Sink or swim? Potential for high faunal turnover in Australian rivers under climate change. Journal of Biogeography, 2017, 44, 489-501.	1.4	31
30	Acoustic Call Library and Detection Distances for Bats of Swaziland. Acta Chiropterologica, 2017, 19, 175-187.	0.2	31
31	Ecological consequences of land clearing and policy reform in Queensland. Pacific Conservation Biology, 2017, 23, 219.	0.5	77
32	Spatial dynamics of coastal forest bird assemblages: the influence of landscape context, forest type, and structural connectivity. Landscape Ecology, 2017, 32, 547-561.	1.9	8
33	Examining current or future trade-offs for biodiversity conservation in north-eastern Australia. PLoS ONE, 2017, 12, e0172230.	1.1	10
34	Movement Patterns, Home Range Size and Habitat Selection of an Endangered Resource Tracking Species, the Black-Throated Finch (Poephila cincta cincta). PLoS ONE, 2016, 11, e0167254.	1.1	26
35	Addressing Potential Cumulative Impacts of Development on Threatened Species: The Case of the Endangered Black-Throated Finch. PLoS ONE, 2016, 11, e0148485.	1.1	8
36	Clearing the way for reef destruction. Nature, 2016, 537, 307-307.	13.7	3

#	Article	IF	CITATIONS
37	Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 2016, 9, 5-13.	2.8	182
38	Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator. Global Change Biology, 2016, 22, 1086-1096.	4.2	51
39	Vulnerability of <scp>A</scp> ustralian tropical savanna birds to climate change. Austral Ecology, 2016, 41, 106-116.	0.7	12
40	The capacity of refugia for conservation planning under climate change. Frontiers in Ecology and the Environment, 2015, 13, 106-112.	1.9	229
41	Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates. PLoS ONE, 2014, 9, e88635.	1.1	18
42	Characteristics of climate change refugia for Australian biodiversity. Austral Ecology, 2014, 39, 887-897.	0.7	85
43	Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change. Nature Climate Change, 2013, 3, 239-243.	8.1	313
44	Appropriateness of fullâ€, partial―and noâ€dispersal scenarios in climate change impact modelling. Diversity and Distributions, 2013, 19, 1224-1234.	1.9	88
45	Rapid decline and shift in the future distribution predicted for the endangered Sokoke Scops Owl <i>Otus ireneae</i> due to climate change. Bird Conservation International, 2013, 23, 247-258.	0.7	17
46	Breeding season of <i>Epomophorus walhbergi</i> in the lowveld of Swaziland. African Zoology, 2012, 47, 321-325.	0.2	4
47	Breeding Season ofEpomophorus walhbergiin the Lowveld of Swaziland. African Zoology, 2012, 47, 321-325.	0.2	4
48	Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios. Ecology and Evolution, 2012, 2, 705-718.	0.8	37
49	Fire regime shifts affect bird species distributions. Diversity and Distributions, 2012, 18, 213-225.	1.9	45
50	Immigrants and refugees: the importance of dispersal in mediating biotic attrition under climate change. Global Change Biology, 2012, 18, 2126-2134.	4.2	21
51	Multiscale topoedaphic heterogeneity increases resilience and resistance of a dominant grassland species to extreme drought and climate change. Global Change Biology, 2011, 17, 943-958.	4.2	55
52	Incorporating low-resolution historic species location data decreases performance of distribution models. Ecological Modelling, 2011, 222, 3444-3448.	1.2	32
53	Resource partitioning by two closely-related sympatric freetail bats,Mormopterusspp , 2011, , 155-166.		5
54	Uniting marine and terrestrial modelling of biodiversity under climate change. Trends in Ecology and Evolution, 2010, 25, 550-551.	4.2	11

#	Article	IF	CITATIONS
55	A Recent Inventory of the Bats of Mozambique with Documentation of Seven New Species for the Country. Acta Chiropterologica, 2010, 12, 371-391.	0.2	29
56	Weather, Not Climate, Defines Distributions of Vagile Bird Species. PLoS ONE, 2010, 5, e13569.	1.1	118
57	Roost selection and home range of an African insectivorous bat Nycteris thebaica (Chiroptera,) Tj ETQq1 1 0.784	314 rgBT 0.3	/Oyerlock 10
58	The influence of riparian vegetation on the distribution and abundance of bats in an African savanna. Acta Chiropterologica, 2008, 10, 339-348.	0.2	74
59	Echolocation calls of rhinolophid and hipposiderid bats in Swaziland. South African Journal of Wildlife Research, 2007, 37, 9-15.	1.4	19