Tomohiko Yamamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/275841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clinical and Experimental Nephrology, 2019, 23, 158-168.	1.6	135
2	Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1441-1449.	4.5	94
3	Both the rituximab dose and maintenance immunosuppression in steroid-dependent/frequently-relapsing nephrotic syndrome have important effects on outcomes. Kidney International, 2020, 97, 393-401.	5.2	69
4	Differential diagnosis of Bartter syndrome, Gitelman syndrome, and pseudo–Bartter/Gitelman syndrome based on clinical characteristics. Genetics in Medicine, 2016, 18, 180-188.	2.4	67
5	Natural History and Genotype–Phenotype Correlation in Female X-Linked Alport Syndrome. Kidney International Reports, 2017, 2, 850-855.	0.8	62
6	Genotype-phenotype correlations influence the response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney International, 2020, 98, 1605-1614.	5.2	55
7	Comprehensive genetic diagnosis of Japanese patients with severe proteinuria. Scientific Reports, 2020, 10, 270.	3.3	50
8	Clinical and Genetic Characteristics in Patients With Gitelman Syndrome. Kidney International Reports, 2019, 4, 119-125.	0.8	47
9	Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nature Communications, 2020, 11, 2777.	12.8	46
10	Detection of Splicing Abnormalities and Genotype-Phenotype Correlation in X-linked Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 2244-2254.	6.1	43
11	Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney International, 2020, 98, 1308-1322.	5.2	39
12	Clinical characteristics of HNF1B-related disorders in a Japanese population. Clinical and Experimental Nephrology, 2019, 23, 1119-1129.	1.6	31
13	Detection of copy number variations by pair analysis using next-generation sequencing data in in inherited kidney diseases. Clinical and Experimental Nephrology, 2018, 22, 881-888.	1.6	25
14	Comparison between conventional and comprehensive sequencing approaches for genetic diagnosis of Alport syndrome. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e883.	1.2	25
15	Mycophenolate Mofetil after Rituximab for Childhood-Onset Complicated Frequently-Relapsing or Steroid-Dependent Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2022, 33, 401-419.	6.1	24
16	Characterization of contiguous gene deletions in COL4A6 and COL4A5 in Alport syndrome-diffuse leiomyomatosis. Journal of Human Genetics, 2017, 62, 733-735.	2.3	20
17	Congenital chloride diarrhea needs to be distinguished from Bartter and Citelman syndrome. Journal of Human Genetics, 2018, 63, 887-892.	2.3	20
18	Trimerization and Genotype–Phenotype Correlation of COL4A5 Mutants in Alport Syndrome. Kidney International Reports, 2020, 5, 718-726.	0.8	18

Τομομικό Yamamura

#	Article	IF	CITATIONS
19	Inherited saltâ€losing tubulopathy: An old condition but a new category of tubulopathy. Pediatrics International, 2020, 62, 428-437.	0.5	16
20	Pathogenic evaluation of synonymous <i>COL4A5</i> variants in Xâ€linked Alport syndrome using a minigene assay. Molecular Genetics & Genomic Medicine, 2020, 8, e1342.	1.2	16
21	A comparison of splicing assays to detect an intronic variant of the OCRL gene in Lowe syndrome. European Journal of Medical Genetics, 2017, 60, 631-634.	1.3	15
22	Clinical and genetic variability of PAX2-related disorder in the Japanese population. Journal of Human Genetics, 2020, 65, 541-549.	2.3	15
23	Determination of the pathogenicity of known COL4A5 intronic variants by in vitro splicing assay. Scientific Reports, 2019, 9, 12696.	3.3	14
24	Last Nucleotide Substitutions of COL4A5 Exons Cause Aberrant Splicing. Kidney International Reports, 2022, 7, 108-116.	0.8	14
25	Female X-linked Alport syndrome with somatic mosaicism. Clinical and Experimental Nephrology, 2017, 21, 877-883.	1.6	13
26	Examination of the predicted prevalence of Gitelman syndrome by ethnicity based on genome databases. Scientific Reports, 2021, 11, 16099.	3.3	13
27	Genetic background, recent advances in molecular biology, and development of novel therapy in Alport syndrome. Kidney Research and Clinical Practice, 2020, 39, 402-413.	2.2	13
28	Cryptic exon activation in SLC12A3 in Gitelman syndrome. Journal of Human Genetics, 2017, 62, 335-337.	2.3	12
29	The utility of urinary CD80 as a diagnostic marker in patients with renal diseases. Scientific Reports, 2018, 8, 17322.	3.3	12
30	Molecular assay for an intronic variant in NUP93 that causes steroid resistant nephrotic syndrome. Journal of Human Genetics, 2019, 64, 673-679.	2.3	12
31	Clinical spectrum of male patients with OFD1 mutations. Journal of Human Genetics, 2019, 64, 3-9.	2.3	12
32	Systematic Review of Genotype-Phenotype Correlations in Frasier Syndrome. Kidney International Reports, 2021, 6, 2585-2593.	0.8	12
33	Clinical characteristics and long-term outcome of diarrhea-associated hemolytic uremic syndrome: a single center experience. Clinical and Experimental Nephrology, 2017, 21, 889-894.	1.6	10
34	An in vitro splicing assay reveals the pathogenicity of a novel intronic variant in ATP6V0A4 for autosomal recessive distal renal tubular acidosis. BMC Nephrology, 2017, 18, 353.	1.8	10
35	Development of ultra-deep targeted RNA sequencing for analyzing X-chromosome inactivation in female Dent disease. Journal of Human Genetics, 2018, 63, 589-595.	2.3	10
36	The Contribution of COL4A5 Splicing Variants to the Pathogenesis of X-Linked Alport Syndrome. Frontiers in Medicine, 2022, 9, 841391.	2.6	10

Τομομικό Yamamura

#	Article	IF	CITATIONS
37	Rare renal ciliopathies in non-consanguineous families that were identified by targeted resequencing. Clinical and Experimental Nephrology, 2017, 21, 136-142.	1.6	9
38	Functional analysis of suspected splicing variants in CLCN5 gene in Dent disease 1. Clinical and Experimental Nephrology, 2020, 24, 606-612.	1.6	9
39	X-chromosome inactivation patterns in females with Fabry disease examined by both ultra-deep RNA sequencing and methylation-dependent assay. Clinical and Experimental Nephrology, 2021, 25, 1224-1230.	1.6	9
40	Pathogenesis of hypokalemia in autosomal dominant hypocalcemia type 1. Clinical and Experimental Nephrology, 2016, 20, 253-257.	1.6	8
41	Diagnostic strategy for inherited hypomagnesemia. Clinical and Experimental Nephrology, 2017, 21, 1003-1010.	1.6	8
42	Pair analysis and custom array CGH can detect a small copy number variation in COQ6 gene. Clinical and Experimental Nephrology, 2019, 23, 669-675.	1.6	8
43	Glomerular galactose-deficient IgA1 expression analysis in pediatric patients with glomerular diseases. Scientific Reports, 2020, 10, 14026.	3.3	8
44	Molecular mechanisms determining severity in patients with Pierson syndrome. Journal of Human Genetics, 2020, 65, 355-362.	2.3	8
45	Functional splicing analysis in an infantile case of atypical hemolytic uremic syndrome caused by digenic mutations in C3 and MCP genes. Journal of Human Genetics, 2018, 63, 755-759.	2.3	7
46	Genotype-Phenotype Correlation in WT1 Exon 8 to 9 Missense Variants. Kidney International Reports, 2021, 6, 2114-2121.	0.8	7
47	Detecting MUC1 Variants in Patients Clinicopathologically Diagnosed With Having Autosomal Dominant Tubulointerstitial Kidney Disease. Kidney International Reports, 2022, 7, 857-866.	0.8	7
48	Changes in the numbers of patients with acute gastroenteritis after voluntary introduction of the rotavirus vaccine in a Japanese children's primary emergency medical center. Environmental Health and Preventive Medicine, 2017, 22, 15.	3.4	5
49	Detection of a Splice Site Variant in a Patient with Glomerulopathy and Fibronectin Deposits. Nephron, 2018, 138, 166-171.	1.8	5
50	Comparison of clinical and genetic characteristics between Dent disease 1 and Dent disease 2. Pediatric Nephrology, 2020, 35, 2319-2326.	1.7	5
51	BCS1L mutations produce Fanconi syndrome with developmental disability. Journal of Human Genetics, 2022, 67, 143-148.	2.3	5
52	Use of renin-angiotensin system inhibitors as initial therapy in children with Henoch–Schönlein purpura nephritis of moderate severity. Pediatric Nephrology, 2022, 37, 1845-1853.	1.7	5
53	Comprehensive genetic analysis using next-generation sequencing for the diagnosis of nephronophthisis-related ciliopathies in the Japanese population. Journal of Human Genetics, 2022, 67, 427-440.	2.3	5
54	A Novel Mutation in a Japanese Family with X-linked Alport Syndrome. Internal Medicine, 2016, 55, 2843-2847.	0.7	4

Τομομικό Yamamura

#	Article	IF	CITATIONS
55	A birth of bipartite exon by intragenic deletion. Molecular Genetics & Genomic Medicine, 2017, 5, 287-294.	1.2	4
56	TGFBI-associated corneal dystrophy and nephropathy: a novel syndrome?. CEN Case Reports, 2019, 8, 14-17.	0.9	3
57	FAT1 biallelic truncating mutation causes a non-syndromic proteinuria in a child. CEN Case Reports, 2021, 10, 100-105.	0.9	3
58	Usefulness of functional splicing analysis to confirm precise disease pathogenesis in Diamond-Blackfan anemia caused by intronic variants in RPS19. Pediatric Hematology and Oncology, 2021, 38, 515-527.	0.8	3
59	Clinical and histological features in pediatric and adolescent/young adult patients with renal disease: a cross-sectional analysis of the Japan Renal Biopsy Registry (J-RBR). Clinical and Experimental Nephrology, 2021, 25, 1018-1026.	1.6	3
60	Evaluation of suspected autosomal Alport Syndrome synonymous variants. Kidney360, 2022, 3, 10.34067/KID.0005252021.	2.1	3
61	Detecting pathogenic deep intronic variants in <scp>Gitelman</scp> syndrome. American Journal of Medical Genetics, Part A, 0, , .	1.2	3
62	Poststreptococcal acute glomerulonephritis can be a risk factor for accelerating kidney dysfunction in Alport syndrome: a case experience. CEN Case Reports, 2020, 9, 418-422.	0.9	2
63	Clinical features of autosomal recessive polycystic kidney disease in the Japanese population and analysis of splicing in PKHD1 gene for determination of phenotypes. Clinical and Experimental Nephrology, 2022, 26, 140-153.	1.6	2
64	Heterozygous Urinary Abnormality–Causing Variants of COL4A3 and COL4A4 Affect Severity of Autosomal Recessive Alport Syndrome. Kidney360, 2020, 1, 936-942.	2.1	2
65	A disease-causing variant of COL4A5 in a Chinese family with Alport syndrome: a case series. BMC Nephrology, 2021, 22, 380.	1.8	2
66	Three Severe Cases of Viral Infections with Post-Kidney Transplantation Successfully Confirmed by Polymerase Chain Reaction and Flow Cytometry. Case Reports in Nephrology and Dialysis, 2018, 8, 198-206.	0.6	1
67	A case with somatic and germline mosaicism in COL4A5 detected by multiplex ligation-dependent probe amplification in X-linked Alport syndrome. CEN Case Reports, 2020, 9, 431-436.	0.9	1
68	Utility of glomerular Gd-IgA1 staining for indistinguishable cases of IgA nephropathy or Alport syndrome. Clinical and Experimental Nephrology, 2021, 25, 779-787.	1.6	1
69	Efficacy of combination therapy for childhood complicated focal IgA nephropathy. Clinical and Experimental Nephrology, 2022, , 1.	1.6	1
70	Identification of novel OCRL isoforms associated with phenotypic differences between Dent disease-2 and Lowe syndrome. Nephrology Dialysis Transplantation, 2021, , .	0.7	0