
Jaco J Geuchies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2758140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids. ACS Nano, 2021, 15, 377-386.	14.6	22
2	Extended Nucleation and Superfocusing in Colloidal Semiconductor Nanocrystal Synthesis. Nano Letters, 2021, 21, 2487-2496.	9.1	36
3	Integrating Sphere Fourier Microscopy of Highly Directional Emission. ACS Photonics, 2021, 8, 1143-1151.	6.6	7
4	Biexciton Binding Energy and Line width of Single Quantum Dots at Room Temperature. Nano Letters, 2021, 21, 5760-5766.	9.1	18
5	Locating and Controlling the Zn Content in In(Zn)P Quantum Dots. Chemistry of Materials, 2020, 32, 557-565.	6.7	40
6	Unravelling three-dimensional adsorption geometries of PbSe nanocrystal monolayers at a liquid-air interface. Communications Chemistry, 2020, 3, .	4.5	19
7	Quantitative electrochemical control over optical gain in colloidal quantum-dot and quantum-well solids. , 2020, , .		2
8	Electrochemical Modulation of the Photophysics of Surface-Localized Trap States in Core/Shell/(Shell) Quantum Dot Films. Chemistry of Materials, 2019, 31, 8484-8493.	6.7	35
9	Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots. Nano Letters, 2019, 19, 3002-3010.	9.1	72
10	Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. Journal of Physical Chemistry C, 2019, 123, 29599-29608.	3.1	8
11	Tuning and Probing the Distribution of Cu ⁺ and Cu ²⁺ Trap States Responsible for Broad-Band Photoluminescence in CuInS ₂ Nanocrystals. ACS Nano, 2018, 12, 11244-11253.	14.6	56
12	Crystallization of Nanocrystals in Spherical Confinement Probed by <i>in Situ</i> X-ray Scattering. Nano Letters, 2018, 18, 3675-3681.	9.1	53
13	Cuboidal Supraparticles Self-Assembled from Cubic CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 15706-15712.	3.1	65
14	Highly Emissive Divalent-Ion-Doped Colloidal CsPb _{1–<i>x</i>} M _{<i>x</i>} Br ₃ Perovskite Nanocrystals through Cation Exchange. Journal of the American Chemical Society, 2017, 139, 4087-4097.	13.7	590
15	Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals. ACS Nano, 2017, 11, 11024-11030.	14.6	119
16	In situ study of the formation mechanism ofÂtwo-dimensional superlattices from PbSeÂnanocrystals. Nature Materials, 2016, 15, 1248-1254.	27.5	199
17	In Situ Probing of Stack-Templated Growth of Ultrathin Cu _{2–<i>x</i>} S Nanosheets. Chemistry of Materials, 2016, 28, 6381-6389.	6.7	29
18	Oleic Acid-Induced Atomic Alignment of ZnS Polyhedral Nanocrystals. Nano Letters, 2016, 16, 2608-2614.	9.1	33