Ehsan Arefian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2757930/publications.pdf

Version: 2024-02-01

218592 315616 2,170 103 26 38 h-index citations g-index papers 107 107 107 3765 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Induction of the antioxidant defense system using long-chain carotenoids extracted from extreme halophilic archaeon, Halovenus aranensis. International Microbiology, 2022, 25, 165-175.	1.1	1
2	Wnt5A and TGF \hat{l}^21 Converges through YAP1 Activity and Integrin Alpha v Up-Regulation Promoting Epithelial to Mesenchymal Transition in Ovarian Cancer Cells and Mesothelial Cell Activation. Cells, 2022, 11, 237.	1.8	9
3	Graphene/Si-Based Biosensor for Glioblastoma Cancer Cell Detection. IEEE Sensors Journal, 2022, 22, 5548-5554.	2.4	2
4	The potential role of miRâ€1290 in cancer progression, diagnosis, prognosis, and treatment: An oncomiR or oncoâ€suppressor microRNA?. Journal of Cellular Biochemistry, 2022, 123, 506-531.	1.2	12
5	Non-coding RNAs enhance the apoptosis efficacy of therapeutic agents used for the treatment of glioblastoma multiform. Journal of Drug Targeting, 2022, 30, 589-602.	2.1	8
6	A Wnt/βâ€catenin signaling pathway is involved in early dopaminergic differentiation of trabecular meshworkâ€derived mesenchymal stem cells. Journal of Cellular Biochemistry, 2022, , .	1.2	3
7	Inhibitory effect of flavonoid xanthomicrol on tripleâ€negative breast tumor via regulation of cancerâ€associated microRNAs. Phytotherapy Research, 2021, 35, 1967-1982.	2.8	15
8	The Potential Therapeutic Effect of RNA Interference and Natural Products on COVID-19: A Review of the Coronaviruses Infection. Frontiers in Pharmacology, 2021, 12, 616993.	1.6	15
9	Downregulation of hepatitis C virus replication by miRâ€196a using lentiviral vectors. Microbiology and Immunology, 2021, 65, 161-170.	0.7	3
10	MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. Journal of Translational Medicine, 2021, 19, 164.	1.8	16
11	Intracerebral Administration of Autologous Mesenchymal Stem Cells as HSV-TK Gene Vehicle for Treatment of Glioblastoma Multiform: Safety and Feasibility Assessment. Molecular Neurobiology, 2021, 58, 4425-4436.	1.9	11
12	Mesenchymal stem cells loaded with oncolytic reovirus enhances antitumor activity in mice models of colorectal cancer. Biochemical Pharmacology, 2021, 190, 114644.	2.0	12
13	Application of iPSCs derived pancreatic \hat{l}^2 -like cells using pancreatic bio-scaffold. Experimental Cell Research, 2021, 405, 112667.	1.2	3
14	miR-424 induces apoptosis in glioblastoma cells and targets AKT1 and RAF1 oncogenes from the ERBB signaling pathway. European Journal of Pharmacology, 2021, 906, 174273.	1.7	10
15	Potential of chitosan/alginate nanoparticles as a non-viral vector for gene delivery: Formulation and optimization using D-optimal design. Materials Science and Engineering C, 2021, 128, 112262.	3.8	12
16	Development of an mRNA-LNP Vaccine against SARS-CoV-2: Evaluation of Immune Response in Mouse and Rhesus Macaque. Vaccines, 2021, 9, 1007.	2.1	14
17	Alginate-based 3D cell culture technique to evaluate the half-maximal inhibitory concentration: an in vitro model of anticancer drug study for anaplastic thyroid carcinoma. Thyroid Research, 2021, 14, 27.	0.7	10
18	3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS Omega, 2021, 6, 35284-35296.	1.6	27

#	Article	IF	Citations
19	The miR-142 Suppresses U-87 Glioblastoma Cell Growth by Targeting EGFR Oncogenic Signaling Pathway Iranian Journal of Pharmaceutical Research, 2021, 20, 202-212.	0.3	1
20	Inhibiting the expression of anti-apoptotic genes BCL2L1 and MCL1, and apoptosis induction in glioblastoma cells by microRNA-342. Biomedicine and Pharmacotherapy, 2020, 121, 109641.	2.5	22
21	The potency of hsa-miR-9-1 overexpression in photoreceptor differentiation of conjunctiva mesenchymal stem cells on a 3D nanofibrous scaffold. Biochemical and Biophysical Research Communications, 2020, 529, 526-532.	1.0	8
22	The synergistic anticancer effects of ReoT3D, CPT-11, and BBI608 on murine colorectal cancer cells. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 555-565.	0.9	10
23	<p>Nanofibrous Scaffolds Containing Hydroxyapatite and Microfluidic-Prepared Polyamidoamin/BMP-2 Plasmid Dendriplexes for Bone Tissue Engineering Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 2633-2646.	3.3	18
24	Co-delivery of gemcitabine prodrug along with anti NF- \hat{l}° B siRNA by tri-layer micelles can increase cytotoxicity, uptake and accumulation of the system in the cancers. Materials Science and Engineering C, 2020, 116, 111161.	3.8	23
25	Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: Formulation and in vivo efficacy evaluation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 26, 102181.	1.7	22
26	Flavonoid calycopterin triggers apoptosis in triple-negative and ER-positive human breast cancer cells through activating different patterns of gene expression. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 2145-2156.	1.4	13
27	MicroRNAâ€4731â€5p delivered by ADâ€mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. Journal of Cellular Physiology, 2020, 235, 8167-8175.	2.0	32
28	MicroRNA-129 Inhibits Glioma Cell Growth by Targeting CDK4, CDK6, and MDM2. Molecular Therapy - Nucleic Acids, 2020, 19, 759-764.	2.3	30
29	miR-548x and miR-4698 controlled cell proliferation by affecting the PI3K/AKT signaling pathway in Glioblastoma cell lines. Scientific Reports, 2020, 10, 1558.	1.6	21
30	Lentivirus expressing shRNAs inhibit the replication of contagious ecthyma virus by targeting DNA polymerase gene. BMC Biotechnology, 2020, 20, 18.	1.7	4
31	A meta-analysis of gene expression data highlights synaptic dysfunction in the hippocampus of brains with Alzheimer's disease. Scientific Reports, 2020, 10, 8384.	1.6	22
32	Corticolimbic analysis of microRNAs and protein expressions in scopolamine-induced memory loss under stress. Neurobiology of Learning and Memory, 2019, 164, 107065.	1.0	14
33	The effect of miRâ€579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines. Journal of Cellular Biochemistry, 2019, 120, 16760-16774.	1.2	25
34	DKK1 expression is suppressed by miR-9 during induced dopaminergic differentiation of human trabecular meshwork mesenchymal stem cells. Neuroscience Letters, 2019, 707, 134250.	1.0	5
35	Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor "BI-847325―on anaplastic thyroid carcinoma. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 1-7.	0.9	22
36	Inhibiting hepatic gluconeogenesis by chitosan lactate nanoparticles containing CRTC2 siRNA targeted by poly(ethylene glycol)-glycyrrhetinic acid. Drug Delivery and Translational Research, 2019, 9, 694-706.	3.0	20

#	Article	IF	CITATIONS
37	Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. International Journal of Biological Macromolecules, 2019, 129, 305-315.	3.6	49
38	Designing a whole cell bioreporter to show antioxidant activities of agents that work by promotion of the KEAP1–NRF2 signaling pathway. Scientific Reports, 2019, 9, 3248.	1.6	19
39	Photodynamic inactivation diminishes quorum sensing-mediated virulence factor production and biofilm formation of Serratia marcescens. World Journal of Microbiology and Biotechnology, 2019, 35, 191.	1.7	18
40	Nanostructured lipid carriers containing rapamycin for prevention of corneal fibroblasts proliferation and haze propagation after burn injuries: In vitro and in vivo. Journal of Cellular Physiology, 2019, 234, 4702-4712.	2.0	17
41	Network of three specific microRNAs influence type 2 diabetes through inducing insulin resistance in muscle cell lines. Journal of Cellular Biochemistry, 2019, 120, 1532-1538.	1.2	14
42	Circulating miR-625 as an Emerging Biomarker for Liver Cirrhosis. Clinical Laboratory, 2019, 65, .	0.2	3
43	miRandb: a resource of online services for miRNA research. Briefings in Bioinformatics, 2018, 19, bbw109.	3.2	19
44	Chitosan and thiolated chitosan: Novel therapeutic approach for preventing corneal haze after chemical injuries. Carbohydrate Polymers, 2018, 179, 42-49.	5.1	32
45	Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Archives of Gynecology and Obstetrics, 2018, 297, 221-231.	0.8	36
46	Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. International Journal of Nanomedicine, 2018, Volume 13, 5865-5886.	3.3	29
47	Bioinformatics analysis of Ronin gene and their potential role in pluripotency control. Gene Reports, 2018, 12, 218-224.	0.4	0
48	Decellularized Pancreas Matrix Scaffolds for Tissue Engineering Using Ductal or Arterial Catheterization. Cells Tissues Organs, 2018, 205, 72-84.	1.3	26
49	Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydrate Polymers, 2018, 201, 131-140.	5.1	42
50	Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Materials Science and Engineering C, 2018, 93, 686-703.	3.8	42
51	Corneal chemical burn treatment through a delivery system consisting of TGF- \hat{l}^21 siRNA: in vitro and in vivo. Drug Delivery and Translational Research, 2018, 8, 1127-1138.	3.0	15
52	The role of miR-17-92 cluster in the expression of tumor suppressor genes in unrestricted somatic stem cells. Biologicals, 2017, 46, 143-147.	0.5	7
53	Suppressing the molecular signaling pathways involved in inflammation and cancer in breast cancer cell lines MDA-MB-231 and MCF-7 by miR-590. Tumor Biology, 2017, 39, 101042831769757.	0.8	17
54	Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydrate Polymers, 2017, 159, 66-75.	5.1	36

#	Article	IF	CITATIONS
55	Tollâ€like receptor4 as a modulator of fertilization and subsequent preâ€implantation development following in vitro maturation in mice. American Journal of Reproductive Immunology, 2017, 78, e12720.	1.2	19
56	Differential Expression of miR-93 and miR-21 in Granulosa Cells and Follicular Fluid of Polycystic Ovary Syndrome Associating with Different Phenotypes. Scientific Reports, 2017, 7, 14671.	1.6	64
57	Pluripotency Crossroads: Junction of Transcription Factors, Epigenetic Mechanisms, MicroRNAs, and Long Non-coding RNAs. Current Stem Cell Research and Therapy, 2017, 12, 300-311.	0.6	7
58	Mutation in <i> ADORA1 </i> > identified as likely cause of early-onset parkinsonism and cognitive dysfunction. Movement Disorders, 2016, 31, 1004-1011.	2,2	38
59	Inhibition of Respiratory Syncytial Virus Replication by Simultaneous Targeting of mRNA and Genomic RNA Using Dual-Targeting siRNAs. Molecular Biotechnology, 2016, 58, 767-775.	1.3	5
60	Reproducible and Reliable Real-time PCR Assay to Measure Mature Form of miR-141. Applied Immunohistochemistry and Molecular Morphology, 2016, 24, 138-143.	0.6	17
61	Efficient inhibition of human immunodeficiency virus replication using novel modified microRNA-30a targeting 3′-untranslated region transcripts. Experimental and Therapeutic Medicine, 2016, 11, 1833-1838.	0.8	3
62	MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumor Biology, 2016, 37, 8993-9000.	0.8	83
63	Possible involvement of miRNAs in tropism of Parvovirus B19. Molecular Biology Reports, 2016, 43, 175-181.	1.0	2
64	Identification of mutation in GTPBP2 in patients of a family with neurodegeneration accompanied by iron deposition in the brain. Neurobiology of Aging, 2016, 38, 216.e11-216.e18.	1.5	43
65	The effect of bovine rotavirus and its nonstructural protein 4 on ER stress-mediated apoptosis in HeLa and HT-29 cells. Tumor Biology, 2016, 37, 3155-3161.	0.8	5
66	Development of Insulin Resistance through Induction of miRNA-135 in C2C12 Cells. Cell Journal, 2016, 18, 353-61.	0.2	15
67	Potential siRNA Molecules for Nucleoprotein and M2/L Overlapping Region of Respiratory Syncytial Virus: In Silico Design. Jundishapur Journal of Microbiology, 2016, 9, e34304.	0.2	3
68	Autophagy Gene Activity May Act As a Key Factor for Sensitivity of Tumor Cells to Oncolytic Vesicular Stomatitis Virus. Iranian Journal of Cancer Prevention, 2016, 9, e3919.	0.7	5
69	An <scp>EBV</scp> â€based plasmid can replicate and maintain in stem cells. Biotechnology Progress, 2015, 31, 1579-1585.	1.3	2
70	MicroRNAâ€124 Regulates Neuronal Differentiation of Mesenchymal Stem Cells by Targeting Sp1 mRNA. Journal of Cellular Biochemistry, 2015, 116, 943-953.	1.2	56
71	MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumor Biology, 2015, 36, 4203-4212.	0.8	46
72	MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells. Tumor Biology, 2015, 36, 7765-7774.	0.8	22

#	Article	IF	CITATIONS
73	Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumor Biology, 2015, 36, 4871-4881.	0.8	25
74	Chitosan polyplex nanoparticle vector for miR-145 expression in MCF-7: Optimization by design of experiment. International Journal of Biological Macromolecules, 2015, 81, 828-837.	3.6	30
75	Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy. Tumor Biology, 2015, 36, 2621-2629.	0.8	20
76	Expression Change of miR-214 and miR-135 during Muscle Differentiation. Cell Journal, 2015, 17, 461-70.	0.2	21
77	Running the differentiation program by transcription factor decoys in stem cells. Stem Cell Fundamentals and Practice, 2015, $1, 16$.	0.0	2
78	MicroRNAs that target RGS5. Iranian Journal of Basic Medical Sciences, 2015, 18, 108-14.	1.0	9
79	The roles of miR-146a in the differentiation of Jurkat T-lymphoblasts. Hematology, 2014, 19, 141-147.	0.7	24
80	Melatonin modulates the expression of BCL-xl and improve the development of vitrified embryos obtained by IVF in mice. Journal of Assisted Reproduction and Genetics, 2014, 31, 453-461.	1.2	40
81	Mir-302 cluster exhibits tumor suppressor properties on human unrestricted somatic stem cells. Tumor Biology, 2014, 35, 6657-6664.	0.8	13
82	Silencing of Hsp90 Chaperone Expression Protects Against 6-Hydroxydopamine Toxicity in PC12 Cells. Journal of Molecular Neuroscience, 2014, 52, 392-402.	1.1	20
83	Insulin Resistance Associated Genes and miRNAs. Applied Biochemistry and Biotechnology, 2014, 174, 63-80.	1.4	34
84	miR-146a and miR-150 promote the differentiation of CD133+ cells into T-lymphoid lineage. Molecular Biology Reports, 2013, 40, 4713-4719.	1.0	21
85	Investigation of deregulated genes of Notch signaling pathway in human T cell acute lymphoblastic leukemia cell lines and clinical samples. Molecular Biology Reports, 2013, 40, 5531-5540.	1.0	14
86	A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Molecular Biology Reports, 2013, 40, 3693-3703.	1.0	26
87	Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Molecular Biology Reports, 2013, 40, 3665-3674.	1.0	81
88	Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neuroscience Letters, 2013, 541, 43-48.	1.0	53
89	Evaluation of cationic dendrimer and lipid as transfection reagents of short RNAs for stem cell modification. International Journal of Pharmaceutics, 2013, 448, 231-238.	2.6	23
90	FOXC1 in human trabecular meshwork cells is involved in regulatory pathway that includes miR-204, MEIS2, and ITGÎ ² 1. Experimental Eye Research, 2013, 111, 112-121.	1.2	46

#	Article	IF	CITATIONS
91	The role of microRNAs in stemness of cancer stem cells. Oncology Reviews, 2013, 7, 8.	0.8	31
92	MicroRNA 17–92 expressed by a transposoneâ€based vector changes expression level of cellâ€cycleâ€related genes. Cell Biology International, 2012, 36, 1299-1299.	1.4	0
93	MicroRNA 17–92 expressed by a transposoneâ€based vector changes expression level of cellâ€cycleâ€related genes. Cell Biology International, 2012, 36, 1005-1012.	1.4	25
94	Genetic Modification of Mesenchymal Stem Cells to Overexpress <i>CXCR4</i> and <i>CXCR7</i> Does Not Improve the Homing and Therapeutic Potentials of These Cells in Experimental Acute Kidney Injury. Stem Cells and Development, 2012, 21, 2969-2980.	1.1	45
95	Analysis of microRNA signatures using size-coded ligation-mediated PCR. Nucleic Acids Research, 2011, 39, e80-e80.	6.5	43
96	Severely damaged kidneys possess multipotent renoprotective stem cells. Cytotherapy, 2010, 12, 303-312.	0.3	12
97	<i>Echinacea purpurea</i> Polysaccharide Reduces the Latency Rate in Herpes Simplex Virus Type-1 Infections. Intervirology, 2009, 52, 29-34.	1.2	15
98	Enrichment of cerebrospinal fluid samples on cell culture for enhancement of sensitivity of mumps and enterovirus detection by multiplex RT-PCR. Diagnostic Microbiology and Infectious Disease, 2008, 60, 375-379.	0.8	1
99	Acute Morphine Administration Reduces White Blood Cells' Capability to Induce Innate Resistance against HSV-1 Infection in BALB/c Mice. NeuroImmunoModulation, 2007, 14, 16-23.	0.9	13
100	Nanofibrous Poly(ε-Caprolactone)/Poly(Vinyl Alcohol)/Chitosan Hybrid Scaffolds for Bone Tissue Engineering using Mesenchymal Stem Cells. International Journal of Artificial Organs, 2007, 30, 204-211.	0.7	68
101	Evaluation of \hat{I}^3 -interferon kinetics in HSV-1 infected mice in different days post infection (in vivo) and post re-stimulation (in vitro). Comparative Immunology, Microbiology and Infectious Diseases, 2007, 30, 1-9.	0.7	3
102	In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biology International, 2007, 31, 299-303.	1.4	51
103	Tumor Microenvironment Changing through Application of MicroRNA-34a Related Mesenchymal Stem Cells Conditioned Medium: Modulation of Breast Cancer Cells toward Non-aggressive Behavior. Iranian Journal of Allergy, Asthma and Immunology, 0, , .	0.3	3