Gang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2757799/publications.pdf

Version: 2024-02-01

108 4,826 papers citations

7,826 39 65
ations h-index g-index

108 108 all docs citations

108 times ranked 5419 citing authors

#	Article	IF	CITATIONS
1	Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. Journal of Cellular and Molecular Medicine, 2017, 21, 648-657.	1.6	447
2	Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	1.9	216
3	Melatonin Alleviates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats via Suppressing Apoptosis, Inflammation, Oxidative Stress, DNA Damage, and Mitochondria Injury. Translational Stroke Research, 2018, 9, 74-91.	2.3	215
4	An Update on Inflammation in the Acute Phase of Intracerebral Hemorrhage. Translational Stroke Research, 2015, 6, 4-8.	2.3	201
5	Evaluation of the Protective Potential of Brain Microvascular Endothelial Cell Autophagy on Blood–Brain Barrier Integrity During Experimental Cerebral Ischemia–Reperfusion Injury. Translational Stroke Research, 2014, 5, 618-626.	2.3	167
6	Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Research, 2018, 1701, 112-125.	1.1	167
7	Melatonin activates the Nrf2â€ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. Journal of Pineal Research, 2012, 53, 129-137.	3.4	146
8	Role of the Nrf2â€ARE pathway in early brain injury after experimental subarachnoid hemorrhage. Journal of Neuroscience Research, 2011, 89, 515-523.	1.3	122
9	Simvastatin reduces secondary brain injury caused by cortical contusion in rats: Possible involvement of TLR4/NF-κB pathway. Experimental Neurology, 2009, 216, 398-406.	2.0	120
10	Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. Journal of Neuroscience Research, 2019, 97, 645-660.	1.3	115
11	The role of nitric oxide in stroke. Medical Gas Research, 2017, 7, 194.	1.2	110
12	Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death and Disease, 2017, 8, e2641-e2641.	2.7	98
13	The Role of LRRK2 in Neurodegeneration of Parkinson Disease. Current Neuropharmacology, 2018, 16, 1348-1357.	1.4	95
14	IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32679-32690.	3.3	93
15	Role of Autophagy in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Molecular Neuroscience, 2012, 46, 192-202.	1.1	92
16	Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: possible involvement of <scp>TLR</scp> 4â€mediated inflammatory pathway. Journal of Pineal Research, 2013, 55, 399-408.	3.4	87
17	Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction. Neural Plasticity, 2017, 2017, 1-6.	1.0	84
18	Dimethylfumarate alleviates early brain injury and secondary cognitive deficits after experimental subarachnoid hemorrhage via activation of Keap1-Nrf2-ARE system. Journal of Neurosurgery, 2015, 123, 915-923.	0.9	76

#	Article	IF	CITATIONS
19	Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin. Journal of Pineal Research, 2014, 57, 110-119.	3.4	72
20	Role of Neurexin- $1\hat{l}^2$ and Neuroligin-1 in Cognitive Dysfunction After Subarachnoid Hemorrhage in Rats. Stroke, 2015, 46, 2607-2615.	1.0	69
21	Progress of Research on Diffuse Axonal Injury after Traumatic Brain Injury. Neural Plasticity, 2016, 2016, 1-7.	1.0	66
22	Luteolin Exerts Neuroprotection via Modulation of the p62/Keap1/Nrf2 Pathway in Intracerebral Hemorrhage. Frontiers in Pharmacology, 2019, 10, 1551.	1.6	65
23	Hydrogen sulfide therapy in brain diseases: from bench to bedside. Medical Gas Research, 2017, 7, 113.	1.2	62
24	Hydrogen Sulfide Ameliorates Early Brain Injury Following Subarachnoid Hemorrhage in Rats. Molecular Neurobiology, 2016, 53, 3646-3657.	1.9	61
25	Roles of autophagy and endoplasmic reticulum stress in intracerebral hemorrhageâ€induced secondary brain injury inÂrats. CNS Neuroscience and Therapeutics, 2017, 23, 554-566.	1.9	59
26	Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction. Neuropharmacology, 2018, 141, 305-315.	2.0	55
27	Acylâ€CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neuroscience and Therapeutics, 2021, 27, 449-463.	1.9	55
28	Exploration of MST1-Mediated Secondary Brain Injury Induced by Intracerebral Hemorrhage in Rats via Hippo Signaling Pathway. Translational Stroke Research, 2019, 10, 729-743.	2.3	54
29	Tert-Butylhydroquinone Alleviates Early Brain Injury and Cognitive Dysfunction after Experimental Subarachnoid Hemorrhage: Role of Keap1/Nrf2/ARE Pathway. PLoS ONE, 2014, 9, e97685.	1.1	53
30	Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. Journal of the Neurological Sciences, 2016, 367, 224-231.	0.3	49
31	Autophagy in hemorrhagic stroke: Mechanisms and clinical implications. Progress in Neurobiology, 2018, 163-164, 79-97.	2.8	48
32	CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage. Journal of Neuroinflammation, 2020, 17, 209.	3.1	48
33	The Neuroprotection of Lysosomotropic Agents in Experimental Subarachnoid Hemorrhage Probably Involving the Apoptosis Pathway Triggering by Cathepsins via Chelating Intralysosomal Iron. Molecular Neurobiology, 2015, 52, 64-77.	1.9	46
34	Identification of two phosphorylation sites essential for annexin A1 in blood–brain barrier protection after experimental intracerebral hemorrhage in rats. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2509-2525.	2.4	45
35	Negative regulation of glial Timâ€3 inhibits the secretion of inflammatory factors and modulates microglia to antiinflammatory phenotype after experimental intracerebral hemorrhage in rats. CNS Neuroscience and Therapeutics, 2019, 25, 674-684.	1.9	43
36	Hyperbaric oxygen therapy in experimental and clinical stroke. Medical Gas Research, 2016, 6, 111.	1.2	43

#	Article	IF	CITATIONS
37	Treatment of secondary brain injury by perturbing postsynaptic density protein-95-NMDA receptor interaction after intracerebral hemorrhage in rats. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1588-1601.	2.4	42
38	Attenuation of Early Brain Injury and Learning Deficits Following Experimental Subarachnoid Hemorrhage Secondary to Cystatin C: Possible Involvement of the Autophagy Pathway. Molecular Neurobiology, 2014, 49, 1043-1054.	1.9	41
39	Cyclophilin A/Cluster of Differentiation 147 Interactions Participate in Early Brain Injury After Subarachnoid Hemorrhage in Rats. Critical Care Medicine, 2015, 43, e369-e381.	0.4	41
40	Influence of Melatonin on Cerebrovascular Proinflammatory Mediators Expression and Oxidative Stress Following Subarachnoid Hemorrhage in Rabbits. Mediators of Inflammation, 2009, 2009, 1-6.	1.4	40
41	HMGB1 promotes neurovascular remodeling via Rage in the late phase of subarachnoid hemorrhage. Brain Research, 2017, 1670, 135-145.	1.1	40
42	Roles of programmed death protein 1 /programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. Journal of Neuroinflammation, 2017, 14, 36.	3.1	38
43	Neuroprotection provided by isoflurane pre-conditioning and post-conditioning. Medical Gas Research, 2017, 7, 48.	1.2	35
44	RIP3 participates in early brain injury after experimental subarachnoid hemorrhage in rats by inducing necroptosis. Neurobiology of Disease, 2019, 129, 144-158.	2.1	35
45	Pramipexole-Induced Hypothermia Reduces Early Brain Injury via PI3K/AKT/GSK3β pathway in Subarachnoid Hemorrhage rats. Scientific Reports, 2016, 6, 23817.	1.6	33
46	Tumor necrosis factor receptorâ€associated factor 6 participates in early brain injury after subarachnoid hemorrhage in rats through inhibiting autophagy and promoting oxidative stress. Journal of Neurochemistry, 2017, 142, 478-492.	2.1	33
47	Mfsd2a Attenuates Blood-Brain Barrier Disruption After Sub-arachnoid Hemorrhage by Inhibiting Caveolae-Mediated Transcellular Transport in Rats. Translational Stroke Research, 2020, 11, 1012-1027.	2.3	32
48	Interleukin-33 reduces neuronal damage and white matter injury via selective microglia M2 polarization after intracerebral hemorrhage in rats. Brain Research Bulletin, 2019, 150, 127-135.	1.4	30
49	GATA-4 regulates neuronal apoptosis after intracerebral hemorrhage via the NF-κB/Bax/Caspase-3 pathway both in vivo and in vitro. Experimental Neurology, 2019, 315, 21-31.	2.0	29
50	TMEM16F Aggravates Neuronal Loss by Mediating Microglial Phagocytosis of Neurons in a Rat Experimental Cerebral Ischemia and Reperfusion Model. Frontiers in Immunology, 2020, 11, 1144.	2.2	28
51	Roles of Prokineticin 2 in Subarachnoid Hemorrhage-Induced Early Brain Injury via Regulation of Phenotype Polarization in Astrocytes. Molecular Neurobiology, 2020, 57, 3744-3758.	1.9	27
52	Matrix metalloproteinase-9 regulates the blood brain barrier via the hedgehog pathway in a rat model of traumatic brain injury. Brain Research, 2020, 1727, 146553.	1.1	26
53	Rbfox-1 contributes to CaMKIIα expression and intracerebral hemorrhage-induced secondary brain injury via blocking micro-RNA-124. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 530-545.	2.4	26
54	The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-8.	1.9	25

#	Article	IF	Citations
55	A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Molecular Brain, 2016, 9, 66.	1.3	25
56	Critical role for Annexin A7 in secondary brain injury mediated by its phosphorylation after experimental intracerebral hemorrhage in rats. Neurobiology of Disease, 2018, 110, 82-92.	2.1	25
57	Possible Role of Raf-1 Kinase in the Development of Cerebral Vasospasm and Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. Molecular Neurobiology, 2015, 52, 1527-1539.	1.9	24
58	Loss of Ribosomal RACK1 (Receptor for Activated Protein Kinase C 1) Induced by Phosphorylation at T50 Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Stroke, 2019, 50, 162-171.	1.0	24
59	The role of hydrogen sulfide in stroke. Medical Gas Research, 2016, 6, 79.	1.2	24
60	Leucine-rich repeat kinase 2 aggravates secondary brain injury induced by intracerebral hemorrhage in rats by regulating the P38 MAPK/Drosha pathway. Neurobiology of Disease, 2018, 119, 53-64.	2.1	21
61	Neurovascular Units and Neural-Glia Networks in Intracerebral Hemorrhage: from Mechanisms to Translation. Translational Stroke Research, 2021, 12, 447-460.	2.3	21
62	Hyperbaric oxygen therapy applied research in traumatic brain injury: from mechanisms to clinical investigation. Medical Gas Research, 2014, 4, 18.	1.2	20
63	Hydrogen therapy: from mechanism to cerebral diseases. Medical Gas Research, 2016, 6, 48.	1.2	20
64	Macrophage stimulating protein preserves blood brain barrier integrity after intracerebral hemorrhage through recepteur d'origine nantais dependent GAB1/Src/l²â€catenin pathway activation in a mouse model. Journal of Neurochemistry, 2019, 148, 114-126.	2.1	19
65	Nox2 and Nox4 Participate in ROS-Induced Neuronal Apoptosis and Brain Injury During Ischemia-Reperfusion in Rats. Acta Neurochirurgica Supplementum, 2020, 127, 47-54.	0.5	18
66	Miro1 Regulates Neuronal Mitochondrial Transport and Distribution to Alleviate Neuronal Damage in Secondary Brain Injury After Intracerebral Hemorrhage in Rats. Cellular and Molecular Neurobiology, 2021, 41, 795-812.	1.7	18
67	Nogo-A/Pir-B/TrkB Signaling Pathway Activation Inhibits Neuronal Survival and Axonal Regeneration After Experimental Intracerebral Hemorrhage in Rats. Journal of Molecular Neuroscience, 2019, 69, 360-370.	1.1	17
68	Sodium/Hydrogen Exchanger 1 Participates in Early Brain Injury after Subarachnoid Hemorrhage both in vivo and in vitro via Promoting Neuronal Apoptosis. Cell Transplantation, 2019, 28, 985-1001.	1.2	16
69	Detrimental Role of miRNA-144-3p in Intracerebral Hemorrhage Induced Secondary Brain Injury is Mediated by Formyl Peptide Receptor 2 Downregulation Both <i>In Vivo</i> and <i>In Vitro</i> Cell Transplantation, 2019, 28, 723-738.	1.2	16
70	Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	16
71	Cerebral cavernous malformation 3 relieves subarachnoid hemorrhage-induced neuroinflammation in rats through inhibiting NF-kB signaling pathway. Brain Research Bulletin, 2020, 160, 74-84.	1.4	15
72	Galectin-9 Promotes Neuronal Restoration via Binding TLR-4 in a Rat Intracerebral Hemorrhage Model. NeuroMolecular Medicine, 2021, 23, 267-284.	1.8	15

#	Article	IF	CITATIONS
73	TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiology of Disease, 2022, 171, 105809.	2.1	15
74	Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Experimental Neurology, 2020, 332, 113386.	2.0	14
75	Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Experimental Neurology, 2015, 272, 145-151.	2.0	13
76	Deletion of Mst1 attenuates neuronal loss and improves neurological impairment in a rat model of traumatic brain injury. Brain Research, 2018, 1688, 15-21.	1.1	13
77	Ischemia-induced cleavage of OPA1 at S1 site aggravates mitochondrial fragmentation and reperfusion injury in neurons. Cell Death and Disease, 2022, 13, 321.	2.7	13
78	Inhibition of EPAC2 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury via the p38/BIM/Caspase-3 Pathway. Journal of Molecular Neuroscience, 2019, 67, 353-363.	1.1	12
79	Potential application value of xenon in stroke treatment. Medical Gas Research, 2018, 8, 116.	1.2	12
80	Loss of MIC60 Aggravates Neuronal Death by Inducing Mitochondrial Dysfunction in a Rat Model of Intracerebral Hemorrhage. Molecular Neurobiology, 2021, 58, 4999-5013.	1.9	10
81	BMAL1 attenuates intracerebral hemorrhage-induced secondary brain injury in rats by regulating the Nrf2 signaling pathway. Annals of Translational Medicine, 2021, 9, 1617-1617.	0.7	10
82	An Update On Medical Treatment for Intracerebral Hemorrhage. Translational Stroke Research, 2018, 9, 549-554.	2.3	8
83	Nix Plays a Neuroprotective Role in Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. Frontiers in Neuroscience, 2020, 14, 245.	1.4	8
84	Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Research Bulletin, 2022, 183, 184-200.	1.4	8
85	Therapeutic Potentials of Synapses after Traumatic Brain Injury: A Comprehensive Review. Neural Plasticity, 2017, 2017, 1-8.	1.0	7
86	Role of hydrogen in traumatic brain injury: a narrative review. Medical Gas Research, 2021, 11, 114.	1.2	7
87	Role of Rph3A in brain injury induced by experimental cerebral ischemiaâ€reperfusion model in rats. CNS Neuroscience and Therapeutics, 2022, , .	1.9	7
88	Aquaporin 4 Depolarization-Enhanced Transferrin Infiltration Leads to Neuronal Ferroptosis after Subarachnoid Hemorrhage in Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	1.9	7
89	The role of nitrous oxide in stroke. Medical Gas Research, 2017, 7, 273.	1.2	6
90	Proteomic-Based Approaches for the Study of Ischemic Stroke. Translational Stroke Research, 2019, 10, 601-606.	2.3	6

#	Article	IF	Citations
91	The role of hyperbaric oxygen therapy in inflammatory bowel disease: a narrative review. Medical Gas Research, 2021, 11, 66.	1.2	6
92	Unbalanced Regulation of Sec22b and Ykt6 Blocks Autophagosome Axonal Retrograde Flux in Neuronal Ischemia–Reperfusion Injury. Journal of Neuroscience, 2022, 42, 5641-5654.	1.7	6
93	The Blood Component Iron Causes Neuronal Apoptosis Following Intracerebral Hemorrhage via the PERK Pathway. Frontiers in Neurology, 2020, 11, 588548.	1.1	5
94	Roles of Rufy3 in experimental subarachnoid hemorrhage-induced early brain injury via accelerating neuronal axon repair and synaptic plasticity. Molecular Brain, 2022, 15, 35.	1.3	5
95	Heterogeneous nuclear ribonucleoprotein A1 exerts protective role in intracerebral hemorrhage-induced secondary brain injury in rats. Brain Research Bulletin, 2020, 165, 169-177.	1.4	4
96	Mitochondrial-Based Therapeutic Strategies for Intracerebral Hemorrhage. Translational Stroke Research, 2022, 13, 214-215.	2.3	4
97	RAB7L1 Participates in Secondary Brain Injury Induced by Experimental Intracerebral Hemorrhage in Rats. Journal of Molecular Neuroscience, 2021, 71, 9-18.	1.1	3
98	Upregulation of Sec22b plays a neuroprotective role in a rat model of traumatic brain injury via inducing protective autophagy. Brain Research Bulletin, 2021, 166, 29-36.	1.4	3
99	Effects of PAK1/LIMK1/Cofilin-mediated Actin Homeostasis on Axonal Injury after Experimental Intracerebral Hemorrhage. Neuroscience, 2022, 490, 155-170.	1.1	3
100	Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental subarachnoid hemorrhage in rats. Frontiers of Medicine, 2021, 15, 887-902.	1.5	3
101	Soluble SIRP-Alpha Promotes Murine Acute Lung Injury Through Suppressing Macrophage Phagocytosis. Frontiers in Immunology, 2022, 13, .	2.2	3
102	Thioredoxin 1 regulates the pentose phosphate pathway via ATM phosphorylation after experimental subarachnoid hemorrhage in rats. Brain Research Bulletin, 2022, 185, 162-173.	1.4	2
103	Translational Hemorrhagic Stroke: Physiology, Pharmaceutical Drugs, and Management. BioMed Research International, 2017, 2017, 1-1.	0.9	1
104	Fraxinellone ameliorates intracerebral hemorrhage-induced secondary brain injury by regulating Krüppel-like transcription factor 2 expression in rats. Brain Research Bulletin, 2021, 177, 340-351.	1.4	1
105	Letter to Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2021, , 1.	2.3	1
106	Inhibition of LRRK2-Rab10 Pathway Improves Secondary Brain Injury After Surgical Brain Injury in Rats. Frontiers in Surgery, 2021, 8, 749310.	0.6	1
107	Letter to "AAV/BBB-Mediated Gene Transfer of CHIP Attenuates Brain Injury Following Experimental Intracerebral Hemorrhage― Translational Stroke Research, 2022, 13, 213-213.	2.3	0
108	Protective Prognostic Biomarkers Negatively Correlated with Macrophage M2 Infiltration in Low-Grade Glioma. Journal of Oncology, 2022, 2022, 1-22.	0.6	0