List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2757461/publications.pdf Version: 2024-02-01

SHANLU

#	Article	IF	CITATIONS
1	Toward More Efficient Statistical Debugging with Abstraction Refinement. ACM Transactions on Software Engineering and Methodology, 2023, 32, 1-38.	6.0	1
2	SherLock: unsupervised synchronization-operation inference. , 2021, , .		3
3	Understanding and Detecting Software Upgrade Failures in Distributed Systems. , 2021, , .		15
4	Visualizing Differences to Improve End-User Understanding of Trigger-Action Programs. , 2020, , .		14
5	Statically inferring performance properties of software configurations. , 2020, , .		15
6	Understanding and automatically detecting conflicting interactions between smart home IoT applications. , 2020, , .		20
7	What bugs cause production cloud incidents?. , 2019, , .		28
8	DFix: automatically fixing timing bugs in distributed systems. , 2019, , .		10
9	Efficient scalable thread-safety-violation detection. , 2019, , .		41
10	View-Centric Performance Optimization for Database-Backed Web Applications. , 2019, , .		12
11	AutoTap: Synthesizing and Repairing Trigger-Action Programs Using LTL Properties. , 2019, , .		43
12	Applying Transactional Memory for Concurrency-Bug Failure Recovery in Production Runs. IEEE Transactions on Parallel and Distributed Systems, 2019, 30, 990-1006.	5.6	0
13	Gerenuk. , 2019, , .		13
14	Pcatch. , 2018, , .		16
15	How <i>not</i> to structure your database-backed web applications. , 2018, , .		44
16	FCatch. , 2018, , .		16
17	Understanding and Auto-Adjusting Performance-Sensitive Configurations. , 2018, , .		28

2

#	Article	IF	CITATIONS
19	DCatch. , 2017, , .		28
20	Performance Diagnosis for Inefficient Loops. , 2017, , .		37
21	DCatch. Operating Systems Review (ACM), 2017, 51, 677-691.	1.9	2
22	DCatch. ACM SIGPLAN Notices, 2017, 52, 677-691.	0.2	3
23	DCatch. Computer Architecture News, 2017, 45, 677-691.	2.5	7
24	Hytrace. , 2017, , .		2
25	TaxDC. Computer Architecture News, 2016, 44, 517-530.	2.5	5
26	Understanding and generating high quality patches for concurrency bugs. , 2016, , .		23
27	Roundtable: Research Opportunities and Challenges for Large-Scale Software Systems. Journal of Computer Science and Technology, 2016, 31, 851-860.	1.5	0
28	A Lightweight System for Detecting and Tolerating Concurrency Bugs. IEEE Transactions on Software Engineering, 2016, 42, 899-917.	5.6	7
29	TaxDC. , 2016, , .		72
30	TaxDC. ACM SIGPLAN Notices, 2016, 51, 517-530.	0.2	14
31	Low-overhead and fully automated statistical debugging with abstraction refinement. , 2016, , .		9
32	TaxDC. Operating Systems Review (ACM), 2016, 50, 517-530.	1.9	2
33	Low-overhead and fully automated statistical debugging with abstraction refinement. ACM SIGPLAN Notices, 2016, 51, 881-896.	0.2	0
34	Interruptible tasks. , 2015, , .		40
35	What change history tells us about thread synchronization. , 2015, , .		28
36	CARAMEL: Detecting and Fixing Performance Problems That Have Non-Intrusive Fixes. , 2015, , .		53

#	Article	IF	CITATIONS
37	Fixing, preventing, and recovering from concurrency bugs. Science China Information Sciences, 2015, 58, 1-18.	4.3	8
38	Al: a lightweight system for tolerating concurrency bugs. , 2014, , .		10
39	Statistical debugging for real-world performance problems. , 2014, , .		46
40	Leveraging the short-term memory of hardware to diagnose production-run software failures. , 2014, ,		20
41	Leveraging the short-term memory of hardware to diagnose production-run software failures. Computer Architecture News, 2014, 42, 207-222.	2.5	1
42	A Study of Linux File System Evolution. ACM Transactions on Storage, 2014, 10, 1-32.	2.1	41
43	Statistical debugging for real-world performance problems. ACM SIGPLAN Notices, 2014, 49, 561-578.	0.2	14
44	Leveraging the short-term memory of hardware to diagnose production-run software failures. ACM SIGPLAN Notices, 2014, 49, 207-222.	0.2	2
45	Toddler: Detecting performance problems via similar memory-access patterns. , 2013, , .		61
46	Efficient concurrency-bug detection across inputs. ACM SIGPLAN Notices, 2013, 48, 785-802.	0.2	8
47	Efficient concurrency-bug detection across inputs. , 2013, , .		19
48	ConAir., 2013,,.		35
49	Production-run software failure diagnosis via hardware performance counters. , 2013, , .		31
50	ConMem. ACM Transactions on Software Engineering and Methodology, 2013, 22, 1-33.	6.0	12
51	ConAir. Computer Architecture News, 2013, 41, 113-126.	2.5	4
52	Production-run software failure diagnosis via hardware performance counters. ACM SIGPLAN Notices, 2013, 48, 101-112.	0.2	3
53	Validating Library Usage Interactively. Lecture Notes in Computer Science, 2013, , 796-812.	1.3	2
54	Production-run software failure diagnosis via hardware performance counters. Computer Architecture News, 2013, 41, 101-112.	2.5	1

#	Article	IF	CITATIONS
55	ConAir. ACM SIGPLAN Notices, 2013, 48, 113-126.	0.2	1
56	Applying transactional memory to concurrency bugs. ACM SIGPLAN Notices, 2012, 47, 211-222.	0.2	4
57	Applying transactional memory to concurrency bugs. , 2012, , .		17
58	ConSeq. ACM SIGPLAN Notices, 2012, 47, 251.	0.2	4
59	Applying transactional memory to concurrency bugs. Computer Architecture News, 2012, 40, 211-222.	2.5	Ο
60	Detecting Concurrency Bugs from the Perspectives of Synchronization Intentions. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 1060-1072.	5.6	9
61	Finding Atomicity-Violation Bugs through Unserializable Interleaving Testing. IEEE Transactions on Software Engineering, 2012, 38, 844-860.	5.6	27
62	Understanding and detecting real-world performance bugs. , 2012, , .		201
63	Understanding and detecting real-world performance bugs. ACM SIGPLAN Notices, 2012, 47, 77-88.	0.2	83
64	Automated atomicity-violation fixing. ACM SIGPLAN Notices, 2012, 47, 389.	0.2	2
65	Automated atomicity-violation fixing. ACM SIGPLAN Notices, 2011, 46, 389-400.	0.2	45
66	ConSeq. Computer Architecture News, 2011, 39, 251-264.	2.5	11
67	ConSeq. , 2011, , .		85
68	Automated atomicity-violation fixing. , 2011, , .		135
69	ConSeq. ACM SIGPLAN Notices, 2011, 46, 251-264.	0.2	12
70	ConMem. Computer Architecture News, 2010, 38, 179-192.	2.5	5
71	Instrumentation and sampling strategies for cooperative concurrency bug isolation. ACM SIGPLAN Notices, 2010, 45, 241-255.	0.2	17
72	Leveraging parallelism for multi-dimensional packetclassification on software routers. Performance Evaluation Review, 2010, 38, 227-238.	0.6	12

#	Article	IF	CITATIONS
73	Do I use the wrong definition?. , 2010, , .		67
74	ConMem. ACM SIGPLAN Notices, 2010, 45, 179-192.	0.2	26
75	ConMem. , 2010, , .		87
76	Instrumentation and sampling strategies for cooperative concurrency bug isolation. , 2010, , .		91
77	Do I use the wrong definition?. ACM SIGPLAN Notices, 2010, 45, 160-174.	0.2	15
78	PRES., 2009, , .		221
79	CTrigger. Computer Architecture News, 2009, 37, 25-36.	2.5	12
80	CTrigger. , 2009, , .		242
81	CTrigger. ACM SIGPLAN Notices, 2009, 44, 25-36.	0.2	27
82	Learning from mistakes. , 2008, , .		562
83	Learning from mistakes. Computer Architecture News, 2008, 36, 329-339.	2.5	32
84	Learning from mistakes. Operating Systems Review (ACM), 2008, 42, 329-339.	1.9	32
85	Learning from mistakes. ACM SIGPLAN Notices, 2008, 43, 329-339.	0.2	80
86	Sweeper. , 2007, , .		37
87	MUVI., 2007,,.		152
88	A study of interleaving coverage criteria. , 2007, , .		12
89	A study of interleaving coverage criteria. , 2007, , .		58
90	Sweeper. Operating Systems Review (ACM), 2007, 41, 115-128.	1.9	11

#	Article	IF	CITATIONS
91	MUVI. Operating Systems Review (ACM), 2007, 41, 103-116.	1.9	28
92	AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants. IEEE Micro, 2007, 27, 26-35.	1.8	52
93	PathExpander: Architectural Support for Increasing the Path Coverage of Dynamic Bug Detection. Microarchitecture (MICRO), Proceedings of the Annual International Symposium on, 2006, , .	0.0	16
94	AVIO. Computer Architecture News, 2006, 34, 37-48.	2.5	5
95	AVIO. ACM SIGPLAN Notices, 2006, 41, 37-48.	0.2	18
96	AVIO., 2006,,.		294
97	Have things changed now?. , 2006, , .		201
98	AVIO. Operating Systems Review (ACM), 2006, 40, 37-48.	1.9	19
99	AccMon: Automatically Detecting Memory-Related Bugs via Program Counter-Based Invariants. , 0, , .		77
100	SafeMem: Exploiting ECC-Memory for Detecting Memory Leaks and Memory Corruption During Production Runs. , 0, , .		94