
Shan Lu

List of Publications by Year
in descending order

Source: https://exaly.com/author-pdf/2757461/publications.pdf

Version: 2024-02-01

100

papers

4,362

citations

15

h-index

567281

26

g-index

552781

103

all docs

103

docs citations

103

times ranked

1172

citing authors

Shan Lu

2

Article IF Citations

1 Learning from mistakes. , 2008, , . 562

2 AVIO. , 2006, , . 294

3 CTrigger. , 2009, , . 242

4 PRES. , 2009, , . 221

5 Have things changed now?. , 2006, , . 201

6 Understanding and detecting real-world performance bugs. , 2012, , . 201

7 MUVI. , 2007, , . 152

8 Automated atomicity-violation fixing. , 2011, , . 135

9 SafeMem: Exploiting ECC-Memory for Detecting Memory Leaks and Memory Corruption During
Production Runs. , 0, , . 94

10 Instrumentation and sampling strategies for cooperative concurrency bug isolation. , 2010, , . 91

11 ConMem. , 2010, , . 87

12 ConSeq. , 2011, , . 85

13 Understanding and detecting real-world performance bugs. ACM SIGPLAN Notices, 2012, 47, 77-88. 0.2 83

14 Learning from mistakes. ACM SIGPLAN Notices, 2008, 43, 329-339. 0.2 80

15 AccMon: Automatically Detecting Memory-Related Bugs via Program Counter-Based Invariants. , 0, , . 77

16 TaxDC. , 2016, , . 72

17 Do I use the wrong definition?. , 2010, , . 67

18 Toddler: Detecting performance problems via similar memory-access patterns. , 2013, , . 61

3

Shan Lu

Article IF Citations

19 A study of interleaving coverage criteria. , 2007, , . 58

20 CARAMEL: Detecting and Fixing Performance Problems That Have Non-Intrusive Fixes. , 2015, , . 53

21 AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants. IEEE Micro, 2007, 27, 26-35. 1.8 52

22 Statistical debugging for real-world performance problems. , 2014, , . 46

23 Automated atomicity-violation fixing. ACM SIGPLAN Notices, 2011, 46, 389-400. 0.2 45

24 How <i>not</i> to structure your database-backed web applications. , 2018, , . 44

25 AutoTap: Synthesizing and Repairing Trigger-Action Programs Using LTL Properties. , 2019, , . 43

26 A Study of Linux File System Evolution. ACM Transactions on Storage, 2014, 10, 1-32. 2.1 41

27 Efficient scalable thread-safety-violation detection. , 2019, , . 41

28 Interruptible tasks. , 2015, , . 40

29 Sweeper. , 2007, , . 37

30 Performance Diagnosis for Inefficient Loops. , 2017, , . 37

31 ConAir. , 2013, , . 35

32 Learning from mistakes. Computer Architecture News, 2008, 36, 329-339. 2.5 32

33 Learning from mistakes. Operating Systems Review (ACM), 2008, 42, 329-339. 1.9 32

34 Production-run software failure diagnosis via hardware performance counters. , 2013, , . 31

35 MUVI. Operating Systems Review (ACM), 2007, 41, 103-116. 1.9 28

36 What change history tells us about thread synchronization. , 2015, , . 28

4

Shan Lu

Article IF Citations

37 DCatch. , 2017, , . 28

38 Understanding and Auto-Adjusting Performance-Sensitive Configurations. , 2018, , . 28

39 What bugs cause production cloud incidents?. , 2019, , . 28

40 CTrigger. ACM SIGPLAN Notices, 2009, 44, 25-36. 0.2 27

41 Finding Atomicity-Violation Bugs through Unserializable Interleaving Testing. IEEE Transactions on
Software Engineering, 2012, 38, 844-860. 5.6 27

42 ConMem. ACM SIGPLAN Notices, 2010, 45, 179-192. 0.2 26

43 Understanding and generating high quality patches for concurrency bugs. , 2016, , . 23

44 Skyway. , 2018, , . 23

45 Leveraging the short-term memory of hardware to diagnose production-run software failures. , 2014, ,
. 20

46 Understanding and automatically detecting conflicting interactions between smart home IoT
applications. , 2020, , . 20

47 AVIO. Operating Systems Review (ACM), 2006, 40, 37-48. 1.9 19

48 Efficient concurrency-bug detection across inputs. , 2013, , . 19

49 AVIO. ACM SIGPLAN Notices, 2006, 41, 37-48. 0.2 18

50 Instrumentation and sampling strategies for cooperative concurrency bug isolation. ACM SIGPLAN
Notices, 2010, 45, 241-255. 0.2 17

51 Applying transactional memory to concurrency bugs. , 2012, , . 17

52 PathExpander: Architectural Support for Increasing the Path Coverage of Dynamic Bug Detection.
Microarchitecture (MICRO), Proceedings of the Annual International Symposium on, 2006, , . 0.0 16

53 Pcatch. , 2018, , . 16

54 FCatch. , 2018, , . 16

5

Shan Lu

Article IF Citations

55 Do I use the wrong definition?. ACM SIGPLAN Notices, 2010, 45, 160-174. 0.2 15

56 Statically inferring performance properties of software configurations. , 2020, , . 15

57 Understanding and Detecting Software Upgrade Failures in Distributed Systems. , 2021, , . 15

58 Statistical debugging for real-world performance problems. ACM SIGPLAN Notices, 2014, 49, 561-578. 0.2 14

59 TaxDC. ACM SIGPLAN Notices, 2016, 51, 517-530. 0.2 14

60 Visualizing Differences to Improve End-User Understanding of Trigger-Action Programs. , 2020, , . 14

61 Gerenuk. , 2019, , . 13

62 A study of interleaving coverage criteria. , 2007, , . 12

63 CTrigger. Computer Architecture News, 2009, 37, 25-36. 2.5 12

64 Leveraging parallelism for multi-dimensional packetclassification on software routers. Performance
Evaluation Review, 2010, 38, 227-238. 0.6 12

65 ConSeq. ACM SIGPLAN Notices, 2011, 46, 251-264. 0.2 12

66 ConMem. ACM Transactions on Software Engineering and Methodology, 2013, 22, 1-33. 6.0 12

67 View-Centric Performance Optimization for Database-Backed Web Applications. , 2019, , . 12

68 Sweeper. Operating Systems Review (ACM), 2007, 41, 115-128. 1.9 11

69 ConSeq. Computer Architecture News, 2011, 39, 251-264. 2.5 11

70 AI: a lightweight system for tolerating concurrency bugs. , 2014, , . 10

71 DFix: automatically fixing timing bugs in distributed systems. , 2019, , . 10

72 Detecting Concurrency Bugs from the Perspectives of Synchronization Intentions. IEEE Transactions
on Parallel and Distributed Systems, 2012, 23, 1060-1072. 5.6 9

6

Shan Lu

Article IF Citations

73 Low-overhead and fully automated statistical debugging with abstraction refinement. , 2016, , . 9

74 Efficient concurrency-bug detection across inputs. ACM SIGPLAN Notices, 2013, 48, 785-802. 0.2 8

75 Fixing, preventing, and recovering from concurrency bugs. Science China Information Sciences, 2015,
58, 1-18. 4.3 8

76 A Lightweight System for Detecting and Tolerating Concurrency Bugs. IEEE Transactions on Software
Engineering, 2016, 42, 899-917. 5.6 7

77 DCatch. Computer Architecture News, 2017, 45, 677-691. 2.5 7

78 AVIO. Computer Architecture News, 2006, 34, 37-48. 2.5 5

79 ConMem. Computer Architecture News, 2010, 38, 179-192. 2.5 5

80 TaxDC. Computer Architecture News, 2016, 44, 517-530. 2.5 5

81 Applying transactional memory to concurrency bugs. ACM SIGPLAN Notices, 2012, 47, 211-222. 0.2 4

82 ConSeq. ACM SIGPLAN Notices, 2012, 47, 251. 0.2 4

83 ConAir. Computer Architecture News, 2013, 41, 113-126. 2.5 4

84 DCatch. ACM SIGPLAN Notices, 2017, 52, 677-691. 0.2 3

85 SherLock: unsupervised synchronization-operation inference. , 2021, , . 3

86 Production-run software failure diagnosis via hardware performance counters. ACM SIGPLAN
Notices, 2013, 48, 101-112. 0.2 3

87 DCatch. Operating Systems Review (ACM), 2017, 51, 677-691. 1.9 2

88 Hytrace. , 2017, , . 2

89 Automated atomicity-violation fixing. ACM SIGPLAN Notices, 2012, 47, 389. 0.2 2

90 Validating Library Usage Interactively. Lecture Notes in Computer Science, 2013, , 796-812. 1.3 2

7

Shan Lu

Article IF Citations

91 Leveraging the short-term memory of hardware to diagnose production-run software failures. ACM
SIGPLAN Notices, 2014, 49, 207-222. 0.2 2

92 TaxDC. Operating Systems Review (ACM), 2016, 50, 517-530. 1.9 2

93 Leveraging the short-term memory of hardware to diagnose production-run software failures.
Computer Architecture News, 2014, 42, 207-222. 2.5 1

94 Production-run software failure diagnosis via hardware performance counters. Computer
Architecture News, 2013, 41, 101-112. 2.5 1

95 ConAir. ACM SIGPLAN Notices, 2013, 48, 113-126. 0.2 1

96 Toward More Efficient Statistical Debugging with Abstraction Refinement. ACM Transactions on
Software Engineering and Methodology, 2023, 32, 1-38. 6.0 1

97 Applying transactional memory to concurrency bugs. Computer Architecture News, 2012, 40, 211-222. 2.5 0

98 Roundtable: Research Opportunities and Challenges for Large-Scale Software Systems. Journal of
Computer Science and Technology, 2016, 31, 851-860. 1.5 0

99 Applying Transactional Memory for Concurrency-Bug Failure Recovery in Production Runs. IEEE
Transactions on Parallel and Distributed Systems, 2019, 30, 990-1006. 5.6 0

100 Low-overhead and fully automated statistical debugging with abstraction refinement. ACM SIGPLAN
Notices, 2016, 51, 881-896. 0.2 0

