Mingjie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2757353/publications.pdf

Version: 2024-02-01

104	12,535	49	107
papers	citations	h-index	g-index
110	110	110	11013
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Amphiphilic Pd@micro-organohydrogels with controlled wettability for enhancing gas-liquid-solid triphasic catalytic performance. Nano Research, 2022, 15, 557-563.	5.8	15
2	Interphase in Polymer Nanocomposites. Jacs Au, 2022, 2, 280-291.	3.6	49
3	Intrinsically anti-freezing and anti-dehydration hydrogel for multifunctional wearable sensors. Science China Materials, 2022, 65, 1980-1986.	3.5	11
4	An orthogonal dual-regulation strategy for sensitive biosensing applications. National Science Review, 2022, 9, .	4.6	13
5	Shape and stiffness memory ionogels with programmable pressure-resistance response. Nature Communications, 2022, 13, 1743.	5.8	54
6	Fluorescence microscopic visualization of functionalized hydrogels. NPG Asia Materials, 2022, 14, .	3.8	11
7	Highly Selective Semihydrogenation via a Wettability-Regulated Mass Transfer Process. ACS Catalysis, 2022, 12, 8494-8502.	5.5	4
8	Protonated Iridate Nanosheets with a Highly Active and Stable Layered Perovskite Framework for Acidic Oxygen Evolution. ACS Catalysis, 2022, 12, 8658-8666.	5.5	34
9	Hydrodynamic pressure sensors with tunable sensitivity based on thermoresponsive hydrogels. Journal of Applied Polymer Science, 2021, 138, 50023.	1.3	5
10	Euryhaline Hydrogel with Constant Swelling and Salinityâ€Enhanced Mechanical Strength in a Wide Salinity Range. Advanced Functional Materials, 2021, 31, 2007664.	7.8	23
11	Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Research, 2021, 14, 1135-1140.	5.8	65
12	Magnetic-programmable organohydrogels with reconfigurable network for mechanical homeostasis. Nano Research, 2021, 14, 255-259.	5.8	6
13	A Ureaseâ€Containing Fluorescent Hydrogel for Transient Information Storage. Angewandte Chemie, 2021, 133, 3684-3690.	1.6	15
14	A Ureaseâ€Containing Fluorescent Hydrogel for Transient Information Storage. Angewandte Chemie - International Edition, 2021, 60, 3640-3646.	7.2	137
15	Multiple network organohydrogels with high strength and anti-swelling properties in different solvents. Giant, 2021, 6, 100058.	2.5	6
16	Ultrahigh energy-dissipation elastomers by precisely tailoring the relaxation of confined polymer fluids. Nature Communications, 2021, 12, 3610.	5.8	58
17	Conductive, sensing stable and mechanical robust silicone rubber composites for largeâ€strain sensors. Polymer Composites, 2021, 42, 6394-6402.	2.3	20
18	Heterogeneous Fluorescent Organohydrogel Enables Dynamic Antiâ€Counterfeiting. Advanced Functional Materials, 2021, 31, 2108365.	7.8	114

#	Article	IF	Citations
19	Design of Nanoparticle Systems by Controllable Assembly and Temporal/Spatial Regulation. Advanced Functional Materials, 2020, 30, 1903351.	7.8	11
20	Regulation of Nanomaterials: Design of Nanoparticle Systems by Controllable Assembly and Temporal/Spatial Regulation (Adv. Funct. Mater. 2/2020). Advanced Functional Materials, 2020, 30, 2070011.	7.8	0
21	Manipulating the hydrophobicity of DNA as a universal strategy for visual biosensing. Nature Protocols, 2020, 15, 316-337.	5.5	19
22	Heteronetwork organohydrogels with exceptional swelling-resistance and adaptive antifouling performance. Polymer Chemistry, 2020, 11, 68-74.	1.9	9
23	Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 5177-5194.	4.0	80
24	A Flexible and Safe Aqueous Zinc–Air Battery with a Wide Operating Temperature Range from â^20 to 70 °C. ACS Sustainable Chemistry and Engineering, 2020, 8, 11501-11511.	3.2	63
25	Fabrication of Elastic Macroporous Polymers with Enhanced Oil Absorbability and Antiwaxing Performance. Langmuir, 2020, 36, 10794-10802.	1.6	5
26	Recent Progress of Biomimetic Antifouling Surfaces in Marine. Advanced Materials Interfaces, 2020, 7, 2000966.	1.9	50
27	Mechanically Robust and Broadband Blackbody Composite Films Based on Selfâ€Assembled Layered Structures. Chemistry - an Asian Journal, 2020, 15, 1436-1439.	1.7	4
28	Anisotropic nanocomposite hydrogels with enhanced actuating performance through aligned polymer networks. Science China Materials, 2020, 63, 832-841.	3.5	34
29	Anti-Freezing multiphase gel materials: Bioinspired design strategies and applications. Giant, 2020, 2, 100014.	2.5	44
30	Anisotropic thermoresponsive hydrogels by mechanical force orientation of clay nanosheets. Polymer, 2020, 192, 122309.	1.8	17
31	Bioinspired functional organohydrogels with synergistic multiphases heterostructure. Polymer, 2020, 190, 122214.	1.8	12
32	Reversibly Thermosecreting Organogels with Switchable Lubrication and Antiâ€Icing Performance. Angewandte Chemie - International Edition, 2020, 59, 11876-11880.	7.2	53
33	Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature, 2020, 580, 210-215.	13.7	284
34	Reversibly Thermosecreting Organogels with Switchable Lubrication and Antiâ€lcing Performance. Angewandte Chemie, 2020, 132, 11974-11978.	1.6	6
35	Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Science Advances, 2020, 6, eaax1464.	4.7	139
36	Improving stability of mechanical properties for nitrile butadiene rubber composite by carbon nanotube with antioxidant loading distribution. Polymer Composites, 2019, 40, E1172.	2.3	10

#	Article	IF	Citations
37	Recent Advances in Bioinspired Gel Surfaces with Superwettability and Special Adhesion. Advanced Science, 2019, 6, 1900996.	5.6	57
38	Improving Elasticity of Conductive Silicone Rubber by Hollow Carbon Black. Chemical Research in Chinese Universities, 2019, 35, 1124-1132.	1.3	8
39	Plastic-like Hydrogels with Reversible Conversion of Elasticity and Plasticity and Tunable Mechanical Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41659-41667.	4.0	27
40	Diffusion–Freezingâ€Induced Microphase Separation for Constructing Largeâ€Area Multiscale Structures on Hydrogel Surfaces. Advanced Materials, 2019, 31, e1808217.	11.1	32
41	Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces. Science China Materials, 2019, 62, 1332-1340.	3.5	11
42	Adaptive Superamphiphilic Organohydrogels with Reconfigurable Surface Topography for Programming Unidirectional Liquid Transport. Advanced Functional Materials, 2019, 29, 1807858.	7.8	54
43	Self-recoverable semi-crystalline hydrogels with thermomechanics and shape memory performance. Science China Materials, 2019, 62, 586-596.	3.5	24
44	Bioinspired Interfacial Materials: From Binary Cooperative Complementary Interfaces to Superwettability Systems. Advanced Materials Interfaces, 2018, 5, 1701176.	1.9	28
45	General Strategy to Fabricate Highly Filled Microcomposite Hydrogels with High Mechanical Strength and Stiffness. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4161-4167.	4.0	17
46	Nonswellable hydrogels with robust micro/nano-structures and durable superoleophobic surfaces under seawater. Science China Chemistry, 2018, 61, 64-70.	4.2	25
47	Frontispiece: Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chemistry - A European Journal, 2018, 24, .	1.7	2
48	High-speed transport of liquid droplets in magnetic tubular microactuators. Science Advances, 2018, 4, eaau8767.	4.7	72
49	Low Temperature Tolerant Organohydrogel Electrolytes for Flexible Solidâ€State Supercapacitors. Advanced Energy Materials, 2018, 8, 1801967.	10.2	288
50	Dualâ€Programmable Shapeâ€Morphing and Selfâ€Healing Organohydrogels Through Orthogonal Supramolecular Heteronetworks. Advanced Materials, 2018, 30, e1804435.	11.1	91
51	Confined Synthesis of Two-Dimensional Covalent Organic Framework Thin Films within Superspreading Water Layer. Journal of the American Chemical Society, 2018, 140, 12152-12158.	6.6	231
52	Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chemistry - A European Journal, 2018, 24, 16930-16943.	1.7	215
53	Integration of hydrogels with functional nanoparticles using hydrophobic comb-like polymers as an adhesive layer. Journal of Materials Chemistry A, 2018, 6, 15147-15153.	5.2	43
54	Spontaneous Direct Band Gap, High Hole Mobility, and Huge Exciton Energy in Atomic-Thin TiO ₂ Nanosheet. Chemistry of Materials, 2018, 30, 6449-6457.	3.2	50

#	Article	IF	CITATIONS
55	Macroporous Conductive Hydrogels with Fatigue Resistance as Strain Sensor for Human Motion Monitoring. Macromolecular Materials and Engineering, 2018, 303, 1800339.	1.7	27
56	Tuning Transition Properties of Stimuliâ€Responsive Brushes by Polydispersity. Advanced Functional Materials, 2018, 28, 1800745.	7.8	18
57	Macroscopic Layered Organogel–Hydrogel Hybrids with Controllable Wetting and Swelling Performance. Advanced Functional Materials, 2018, 28, 1800793.	7.8	76
58	Designing Bioinspired Antiâ€Biofouling Surfaces based on a Superwettability Strategy. Small, 2017, 13, 1503334.	5.2	165
59	Advances in Bioinspired Interfacial Materials with Superwettability. Small, 2017, 13, 1604106.	5. 2	4
60	Corrosionâ€Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. Advanced Functional Materials, 2017, 27, 1605446.	7.8	243
61	Corrosion Resistance: Corrosionâ€Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod (Adv. Funct. Mater. 8/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
62	Highly Stretchable, Shape Memory Organohydrogels Using Phaseâ€Transition Microinclusions. Advanced Materials, 2017, 29, 1701695.	11.1	136
63	Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nature Communications, 2017, 8, 15911.	5.8	266
64	A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization. NPG Asia Materials, 2017, 9, e380-e380.	3.8	71
65	Antiâ€freezing, Conductive Selfâ€healing Organohydrogels with Stable Strainâ€Sensitivity at Subzero Temperatures. Angewandte Chemie, 2017, 129, 14347-14351.	1.6	39
66	Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures. Advanced Materials, 2017, 29, 1703045.	11.1	266
67	Antiâ€freezing, Conductive Selfâ€healing Organohydrogels with Stable Strainâ€Sensitivity at Subzero Temperatures. Angewandte Chemie - International Edition, 2017, 56, 14159-14163.	7.2	538
68	Biphasic Synergistic Gel Materials with Switchable Mechanics and Selfâ€Healing Capacity. Angewandte Chemie - International Edition, 2017, 56, 13464-13469.	7.2	92
69	Biphasic Synergistic Gel Materials with Switchable Mechanics and Selfâ€Healing Capacity. Angewandte Chemie, 2017, 129, 13649-13654.	1.6	17
70	Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2, .	23.3	1,212
71	Interfacial Engineering of Hierarchically Porous NiTi/Hydrogels Nanocomposites with Exceptional Antibiofouling Surfaces. Advanced Materials, 2017, 29, 1602869.	11.1	56
72	Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. Chemical Science, 2017, 8, 2010-2016.	3.7	35

#	Article	IF	CITATIONS
73	Superhydrophobic Diffusion Barriers for Hydrogels via Confined Interfacial Modification. Advanced Materials, 2016, 28, 7383-7389.	11.1	61
74	Thermal decomposition kinetics and mechanism of low-temperature hydrogenated acrylonitrile butadiene rubber composites with sodium methacrylate. Chemical Research in Chinese Universities, 2016, 32, 1045-1051.	1.3	1
75	Improved understanding on the reinforcement of low-temperature hydrogenated nitrile butadiene rubber composites by in situ polymerization of unsaturated metal methacrylate: influences of salt cation. RSC Advances, 2016, 6, 104416-104424.	1.7	5
76	Dialectics of nature in materials science: binary cooperative complementary materials. Science China Materials, 2016, 59, 239-246.	3.5	59
77	Improved mechanical properties and thermal degradation of low-temperature hydrogenated acrylonitrile butadiene rubber composites with poly(sodium methacrylate) nanowires. RSC Advances, 2016, 6, 64110-64120.	1.7	6
78	Superspreadingâ€Based Fabrication of Asymmetric Porous PAAâ€gâ€PVDF Membranes for Efficient Water Flow Gating. Advanced Materials Interfaces, 2016, 3, 1600615.	1.9	19
79	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. Angewandte Chemie, 2016, 128, 3679-3683.	1.6	15
80	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. Angewandte Chemie - International Edition, 2016, 55, 3615-3619.	7.2	64
81	Controlling the evaporation lifetimes of sessile droplets on superhydrophobic paper by simple stretching. RSC Advances, 2016, 6, 12862-12867.	1.7	11
82	Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery―Surfaces: A Brief Study on the Functions and Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3615-3623.	4.0	212
83	Selfâ€Replenishable Antiâ€Waxing Organogel Materials. Angewandte Chemie - International Edition, 2015, 54, 8975-8979.	7.2	71
84	Semiâ€Eggâ€Like Heterogeneous Compartmentalization of Cells Controlled by Contact Angle Hysteresis. Advanced Functional Materials, 2015, 25, 4506-4511.	7.8	8
85	An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015, 517, 68-72.	13.7	440
86	Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nature Materials, 2015, 14, 1002-1007.	13.3	530
87	Filefishâ€Inspired Surface Design for Anisotropic Underwater Oleophobicity. Advanced Functional Materials, 2014, 24, 809-816.	7.8	220
88	Oleophobicity: Filefish-Inspired Surface Design for Anisotropic Underwater Oleophobicity (Adv.) Tj ETQq0 0 0 rgB	T <u>l</u> Overloo	ck 10 Tf 50 14
89	Organogelâ€based Thin Films for Selfâ€Cleaning on Various Surfaces. Advanced Materials, 2013, 25, 4477-4481.	11.1	183
90	Bioinspired multiscale surfaces with special wettability. MRS Bulletin, 2013, 38, 375-382.	1.7	71

#	Article	IF	CITATIONS
91	Anisotropically Luminescent Hydrogels Containing Magneticallyâ€Aligned MWCNTsâ€Eu(III) Hybrids. Advanced Materials, 2013, 25, 2462-2467.	11.1	54
92	PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil droplet transport. Soft Matter, 2012, 8, 9064.	1.2	94
93	In Situ Fully Lightâ€Driven Switching of Superhydrophobic Adhesion. Advanced Functional Materials, 2012, 22, 760-763.	7.8	86
94	An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. Soft Matter, 2012, 8, 6740.	1.2	89
95	Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. Soft Matter, 2012, 8, 3730.	1.2	66
96	Recent developments in polymeric superoleophobic surfaces. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1209-1224.	2.4	219
97	Surface Wetting in Liquid–Liquid–Solid Triphase Systems: Solidâ€Phaseâ€Independent Transition at the Liquid–Liquid Interface by Lewis Acid–Base Interactions. Angewandte Chemie - International Edition, 2012, 51, 8348-8351.	7.2	41
98	Controllable Underwater Oilâ€Adhesionâ€Interface Films Assembled from Nonspherical Particles. Advanced Functional Materials, 2011, 21, 4436-4441.	7.8	96
99	A Novel Superhydrophilic and Underwater Superoleophobic Hydrogelâ€Coated Mesh for Oil/Water Separation. Advanced Materials, 2011, 23, 4270-4273.	11.1	1,462
100	Bioâ€Inspired Hierarchical Macromolecule–Nanoclay Hydrogels for Robust Underwater Superoleophobicity. Advanced Materials, 2010, 22, 4826-4830.	11.1	262
101	Bioinspired Super-antiwetting Interfaces with Special Liquidâ^'Solid Adhesion. Accounts of Chemical Research, 2010, 43, 368-377.	7.6	575
102	Thermal-responsive hydrogel surface: tunable wettability and adhesion to oil at the water/solid interface. Soft Matter, 2010, 6, 2708.	1.2	153
103	Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Advanced Materials, 2009, 21, 665-669.	11.1	1,123
104	Antiplatelet and Thermally Responsive Poly(<i>N</i> i>isopropylacrylamide) Surface with Nanoscale Topography. Journal of the American Chemical Society, 2009, 131, 10467-10472.	6.6	192