Craig Banks

List of Publications by Citations

Source: https://exaly.com/author-pdf/2757218/craig-banks-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,010 78 144 543 h-index g-index citations papers 31,002 7.73 572 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
543	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. <i>Advanced Materials</i> , 2015 , 27, 7861-6	24	892
542	Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. <i>Small</i> , 2006 , 2, 182-93	11	885
541	Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. <i>Chemical Communications</i> , 2005 , 829-41	5.8	853
540	An overview of graphene in energy production and storage applications. <i>Journal of Power Sources</i> , 2011 , 196, 4873-4885	8.9	712
539	Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2533-7	16.4	528
538	Graphene electrochemistry: fundamental concepts through to prominent applications. <i>Chemical Society Reviews</i> , 2012 , 41, 6944-76	58.5	497
537	New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. <i>Analyst, The</i> , 2006 , 131, 15-21	5	490
536	Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. <i>Analytical Chemistry</i> , 2004 , 76, 2677-82	7.8	445
535	Graphene electrochemistry: an overview of potential applications. <i>Analyst, The</i> , 2010 , 135, 2768-78	5	438
534	A decade of graphene research: production, applications and outlook. <i>Materials Today</i> , 2014 , 17, 426-4	32 1.8	368
533	Electrochemical impedance spectroscopy: an overview of bioanalytical applications. <i>Analytical Methods</i> , 2013 , 5, 1098	3.2	367
532	Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. <i>Chemical Communications</i> , 2004 , 1804-5	5.8	364
531	Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. <i>Nano Letters</i> , 2006 , 6, 1556-8	11.5	355
530	Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. <i>Analyst, The</i> , 2005 , 130, 1232-9	5	348
529	New directions in screen printed electroanalytical sensors: an overview of recent developments. <i>Analyst, The</i> , 2011 , 136, 1067-76	5	342
528	Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 382, 12-21	4.4	340
527	Microbial fuel cells: An overview of current technology. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 101, 60-81	16.2	317

526	Chemically Modified Carbon Nanotubes for Use in Electroanalysis. <i>Mikrochimica Acta</i> , 2006 , 152, 187-21	4 5.8	295
525	3D Printed Graphene Based Energy Storage Devices. <i>Scientific Reports</i> , 2017 , 7, 42233	4.9	248
524	A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. <i>Energy and Environmental Science</i> , 2013 , 6, 3665	35.4	247
523	Electrochemical capacitors utilising transition metal oxides: an update of recent developments. <i>RSC Advances</i> , 2011 , 1, 1171	3.7	236
522	Graphene-Rich Wrapped Petal-Like Rutile TiO tuned by Carbon Dots for High-Performance Sodium Storage. <i>Advanced Materials</i> , 2016 , 28, 9391-9399	24	226
521	The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. <i>Analyst, The</i> , 2006 , 131, 106-10	5	221
520	Understanding Voltammetry 2007 ,		217
519	Electrochemistry of graphene: not such a beneficial electrode material?. RSC Advances, 2011, 1, 978	3.7	201
518	Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5648-5655	13	197
517	Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. <i>Journal of Power Sources</i> , 2014 , 267, 888-900	8.9	191
516	Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. <i>ChemPhysChem</i> , 2006 , 7, 1337-44	3.2	190
515	Voltammetry at spatially heterogeneous electrodes. <i>Journal of Solid State Electrochemistry</i> , 2005 , 9, 79	7 <u>-2</u> 8608	186
514	Advanced Hierarchical Vesicular Carbon Co-Doped with S, P, N for High-Rate Sodium Storage. <i>Advanced Science</i> , 2018 , 5, 1800241	13.6	177
513	First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5358	13	172
512	An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. <i>Applied Materials Today</i> , 2018 , 10, 218-226	6.6	170
511	Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors. <i>Advanced Functional Materials</i> , 2017 , 27, 1700856	15.6	165
510	The cyclic voltammetric response of electrochemically heterogeneous surfaces. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 574, 123-152	4.1	164
509	Electrochemistry of immobilised redox droplets: Concepts and applications. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4053	3.6	164

508	The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: Fitting of experimental data. <i>Journal of Electroanalytical Chemistry</i> , 2005 , 585, 51-62	4.1	160
507	Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. <i>Nanoscale</i> , 2014 , 6, 1607-21	7.7	157
506	An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. <i>Journal of the Iranian Chemical Society</i> , 2005 , 2, 1-25	2	152
505	Characterisation of commercially available electrochemical sensing platforms. <i>Sensors and Actuators B: Chemical</i> , 2009 , 138, 556-562	8.5	151
504	Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. <i>Biosensors</i> , 2018 , 8,	5.9	146
503	Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. <i>Energy Storage Materials</i> , 2018 , 12, 310-323	19.4	144
502	Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. <i>Analyst, The</i> , 2004 , 129, 755-8	5	134
501	Edge plane pyrolytic graphite electrodes in electroanalysis: an overview. <i>Analytical Sciences</i> , 2005 , 21, 1263-8	1.7	133
500	Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. <i>Journal of Power Sources</i> , 2014 , 256, 258-263	8.9	126
499	Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. <i>Analyst, The</i> , 2004 , 129, 225-8	5	124
498	The Handbook of Graphene Electrochemistry 2014 ,		123
497	The electrochemistry of CVD graphene: progress and prospects. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8264-81	3.6	121
496	The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 4598-611	3.6	118
495	Exploring the physicoelectrochemical properties of graphene. Chemical Communications, 2010, 46, 898	6-88	118
494	2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine. <i>Analytical Chemistry</i> , 2016 , 88, 9729-9737	7.8	115
493	Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. <i>Biosensors and Bioelectronics</i> , 2016 , 77, 1168-74	11.8	113
492	Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. <i>Advanced Energy Materials</i> , 2018 , 8, 1702606	21.8	109
	Electroanalytical determination of trace chloride in room-temperature ionic liquids. Analytical		

490	Understanding Voltammetry 2010 ,		105
489	An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). <i>Analyst, The</i> , 2015 , 140, 4932-48	5	101
488	Alternating Voltage Introduced NiCo Double Hydroxide Layered Nanoflakes for an Asymmetric Supercapacitor. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 22741-4	9.5	99
487	Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. <i>Sensors</i> , 2019 , 19,	3.8	98
486	A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 14357-63	3.6	98
485	Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. <i>Electrochimica Acta</i> , 2015 , 157, 125-133	6.7	94
484	Electroanalytical determination of cadmium(II) and lead(II) using an in-situ bismuth film modified edge plane pyrolytic graphite electrode. <i>Analytical Sciences</i> , 2007 , 23, 283-9	1.7	94
483	2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction. <i>Nanoscale</i> , 2015 , 7, 18152-68	7.7	93
482	Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. <i>Food Chemistry</i> , 2018 , 255, 104-111	8.5	93
481	Electroanalysis Utilizing Amperometric Microdisk Electrode Arrays. <i>Electroanalysis</i> , 2007 , 19, 1973-1986	3	93
480	Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms. <i>Analytical Chemistry</i> , 2017 , 89, 2170-2178	7.8	92
479	Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2571	13	91
47 ⁸	Trace Detection of Mercury(II) Using Gold Ultra-Microelectrode Arrays. <i>Electroanalysis</i> , 2006 , 18, 573-57	83,	91
477	Direct Oxidation of Ascorbic Acid at an Edge Plane Pyrolytic Graphite Electrode: A Comparison of the Electroanalytical Response with Other Carbon Electrodes. <i>Electroanalysis</i> , 2005 , 17, 1529-1533	3	89
476	Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity. <i>Electrochemistry Communications</i> , 2007 , 9, 2330-2333	5.1	87
475	Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes. <i>Analyst, The</i> , 2012 , 137, 896-902	5	86
474	Graphite screen printed electrodes for the electrochemical sensing of chromium(VI). <i>Analyst, The</i> , 2010 , 135, 1947-52	5	86
473	Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. <i>Analytical Chemistry</i> , 2019 , 91, 12844-12851	7.8	85

472	Fabrication of Graphene Oxide Supercapacitor Devices. ACS Applied Energy Materials, 2018, 1, 707-714	6.1	83
471	Aqueous Sodium-Ion Battery using a Na3V2(PO4)3 Electrode. <i>ChemElectroChem</i> , 2014 , 1, 871-876	4.3	82
470	Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations. <i>Langmuir</i> , 2007 , 23, 9501-4	4	82
469	Paper-based electroanalytical sensing platforms. <i>Analytical Methods</i> , 2013 , 5, 103-110	3.2	79
468	Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5962	13	79
467	Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition. <i>Analyst, The</i> , 2005 , 130, 1303-11	5	79
466	A self-catalytic carbon paste electrode for the detection of vitamin B12. <i>Analytical Chemistry</i> , 2004 , 76, 161-5	7.8	78
465	A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3055-61	3.6	77
464	Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. <i>Chemical Communications</i> , 2012 , 48, 1425-7	5.8	77
463	Iron(III) Oxide Graphite Composite Electrodes: Application to the Electroanalytical Detection of Hydrazine and Hydrogen Peroxide. <i>Electroanalysis</i> , 2006 , 18, 1757-1762	3	77
462	Boron doped diamond electrode modified with iridium oxide for amperometic detection of ultra trace amounts of arsenic(III). <i>Analyst, The</i> , 2004 , 129, 9	5	76
461	Sonically assisted electroanalytical detection of ultratrace arsenic. <i>Analytical Chemistry</i> , 2004 , 76, 5051-	- 5 7.8	76
460	Graphene Electrochemistry: Surfactants Inherent to Graphene Can Dramatically Effect Electrochemical Processes. <i>Electroanalysis</i> , 2011 , 23, 894-899	3	74
459	Super-washing does not leave single walled carbon nanotubes iron-free. <i>Analyst, The</i> , 2007 , 132, 21-3	5	74
458	Multifunctional dual Na3V2(PO4)2F3 cathode for both lithium-ion and sodium-ion batteries. <i>RSC Advances</i> , 2014 , 4, 11375-11383	3.7	73
457	The electrochemical performance of graphene modified electrodes: an analytical perspective. <i>Analyst, The</i> , 2012 , 137, 1815-23	5	73
456	Quantifying the electron transfer sites of graphene. <i>Electrochemistry Communications</i> , 2011 , 13, 8-11	5.1	72
455	Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the Electrocatalysis Seen at Some Nanotube-Modified Electrodes. <i>Angewandte Chemie</i> , 2006 , 118, 2595-2599	3.6	72

45	54	Ultrasonically Enhanced Voltammetric Analysis and Applications: An Overview. <i>Electroanalysis</i> , 2003 , 15, 329-346	3	72	
45	53	The Electrochemical Detection of Arsenic(III) at a Silver Electrode. <i>Electroanalysis</i> , 2005 , 17, 1727-1733	3	72	
45	52	Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. <i>Chemical Engineering Journal</i> , 2021 , 403, 126162	14.7	72	
45	5 1	Antimicrobial Efficacy and Synergy of Metal Ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in Planktonic and Biofilm Phenotypes. <i>Scientific Reports</i> , 2017 , 7, 5911	4.9	71	
45	50	Electroanalytical applications of boron-doped diamond microelectrode arrays. <i>Talanta</i> , 2006 , 69, 829-34	46.2	71	
44	19	The latest developments in quantifying cyanide and hydrogen cyanide. <i>TrAC - Trends in Analytical Chemistry</i> , 2015 , 64, 75-85	14.6	70	
44	4 8	2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction. <i>Nanoscale</i> , 2016 , 8, 14767-77	7.7	70	
44	1 7	All-diamond microelectrode array device. <i>Analytical Chemistry</i> , 2005 , 77, 3705-8	7.8	69	
44	4 6	Graphene electrochemistry: Surfactants inherent to graphene inhibit metal analysis. <i>Electrochemistry Communications</i> , 2011 , 13, 111-113	5.1	68	
44	4 5	Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 379, 700-6	4.4	66	
44	14	Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors. <i>RSC Advances</i> , 2012 , 2, 6672	3.7	65	
44	43	Palladium Sub-Nanoparticle Decorated B amboolMulti-Walled Carbon Nanotubes Exhibit Electrochemical Metastability: Voltammetric Sensing in Otherwise Inaccessible pH Ranges. <i>Electroanalysis</i> , 2006 , 18, 2481-2485	3	65	
44	1 2	Understanding Voltammetry 2018 ,		65	
44	41	A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage. <i>RSC Advances</i> , 2015 , 5, 12782-12791	3.7	64	
44	40	Understanding the Physicoelectrochemical Properties of Carbon Nanotubes: Current State of the Art. <i>Electroanalysis</i> , 2010 , 22, 7-19	3	63	
43	39	The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon-carbon bond formation via electrogenerated N-acyliminium ions. <i>Beilstein Journal of Organic Chemistry</i> , 2014 , 10, 30.	5 6: 7 2	62	
43	38	Forensic electrochemistry: the electroanalytical sensing of synthetic cathinone-derivatives and their accompanying adulterants in "legal high" products. <i>Analyst, The</i> , 2014 , 139, 389-400	5	61	
43	37	Forensic electrochemistry applied to the sensing of new psychoactive substances: electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples. Analytical Chemistry 2014 , 86, 9985-92	7.8	61	

436	Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecylhydrogenphosphate (DHP) film. <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 306-311	8.5	61
435	Copper Oxide Graphite Composite Electrodes: Application to Nitrite Sensing. <i>Electroanalysis</i> , 2007 , 19, 79-84	3	61
434	Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: application to glucose sensing. <i>Analyst, The,</i> 2006 , 131, 670-7	5	61
433	The transport limited currents at insonated electrodes. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 31	43.6	61
432	Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water. <i>Biosensors and Bioelectronics</i> , 2018 , 99, 382-388	11.8	61
431	Simultaneous Determination of Uric Acid and Ascorbic Acid Using Edge Plane Pyrolytic Graphite Electrodes. <i>Electroanalysis</i> , 2006 , 18, 741-747	3	60
430	Gold Nanoparticle Modified Screen Printed Electrodes for the Trace Sensing of Arsenic(III) in the Presence of Copper(II). <i>Electroanalysis</i> , 2010 , 22, 2496-2501	3	59
429	Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO 2 decorated Graphene oxide nanocomposite screen-printed electrodes. <i>Electrochimica Acta</i> , 2017 , 227, 255-266	6.7	58
428	Ultraflexible Screen-Printed Graphitic Electroanalytical Sensing Platforms. <i>Electroanalysis</i> , 2014 , 26, 26	2-3274	58
427	Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. <i>Journal of Materials Science</i> , 2012 , 47, 503-507	4.3	58
426	Electrochemical impedance spectroscopy versus cyclic voltammetry for the electroanalytical sensing of capsaicin utilising screen printed carbon nanotube electrodes. <i>Analyst, The</i> , 2013 , 138, 2970-	8 ⁵ 1	58
425	Voltammetry of Electroactive Oil Droplets: Electrochemically-Induced Ion Insertion, Expulsion and Reaction Processes at Microdroplets of N,N,N[NETetraalkyl-para- phenylenediamines (TRPD, R = n-Butyl, n-Hexyl, n-Heptyl and n-Nonyl). <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9619-9632	3.4	58
424	The detection of nitrate using in-situ copper nanoparticle deposition at a boron doped diamond electrode. <i>Analytical Sciences</i> , 2005 , 21, 1421-30	1.7	57
423	Forensic electrochemistry: the electroanalytical sensing of Rohypnol (flunitrazepam) using screen-printed graphite electrodes without recourse for electrode or sample pre-treatment. <i>Analyst, The,</i> 2013 , 138, 6185-91	5	56
422	Graphene electrochemical supercapacitors: the influence of oxygen functional groups. <i>Chemical Communications</i> , 2012 , 48, 2770-2	5.8	56
421	Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite. <i>Analytical Sciences</i> , 2007 , 23, 165-70	1.7	56
420	Lead(IV) oxide-graphite composite electrodes: application to sensing of ammonia, nitrite and phenols. <i>Analytica Chimica Acta</i> , 2007 , 587, 240-6	6.6	56
419	Manganese detection in marine sediments: anodic vs. cathodic stripping voltammetry. <i>Talanta</i> , 2005 , 65, 423-9	6.2	56

(2004-2003)

418	electrode. The KouteckyLevich equation of oxygen at a glassy carbon anthraquinone-modified electrode. The KouteckyLevich equation applied to insonated electro-catalytic reactions. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 3988-3993	3.6	56
417	In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. <i>RSC Advances</i> , 2015 , 5, 37281-37286	3.7	55
416	Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. <i>Sensors and Actuators B: Chemical</i> , 2017 , 241, 978-984	8.5	55
415	Sonoelectroanalytical Detection of Ultra-Trace Arsenic. <i>Electroanalysis</i> , 2005 , 17, 335-342	3	55
414	Novel MWCNTs/graphene oxide/pyrogallol composite with enhanced sensitivity for biosensing applications. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 1034-1041	11.8	54
413	Graphene electrochemistry: fabricating amperometric biosensors. <i>Analyst, The</i> , 2011 , 136, 2084-9	5	54
412	Next generation screen printed electrochemical platforms: Non-enzymatic sensing of carbohydrates using screen printed electrodes. <i>Analytical Methods</i> , 2009 , 1, 183-187	3.2	53
411	Regular arrays of microdisc electrodes: simulation quantifies the fraction of 'dead' electrodes. <i>Analyst, The</i> , 2006 , 131, 440-5	5	53
410	Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response?. <i>Analyst, The</i> , 2016 , 141, 2791-9	5	52
409	Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes. <i>Sensors</i> , 2014 , 14, 21905-22	3.8	52
408	Characterization and fabrication of disposable screen printed microelectrodes. <i>Electrochemistry Communications</i> , 2009 , 11, 1377-1380	5.1	52
407	Sonoelectrochemistry Understood via Nanosecond Voltammetry: Sono-emulsions and the Measurement of the Potential of Zero Charge of a Solid Electrode. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 5810-5813	3.4	52
406	Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid. <i>RSC Advances</i> , 2016 , 6, 14474-14482	3.7	51
405	CVD graphene electrochemistry: the role of graphitic islands. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 15825-8	3.6	51
404	Graphene ultracapacitors: structural impacts. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 4799-803	3.6	50
403	Electrode Kinetic Studies of the Hydroquinone B enzoquinone System and the Reaction between Hydroquinone and Ammonia in Propylene Carbonate: Application to the Indirect Electroanalytical Sensing of Ammonia. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1496-1504	3.8	50
402	Edge plane sites on highly ordered pyrolytic graphite as templates for making palladium nanowires via electrochemical decoration. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 22306-9	3.4	50
401	Sonoelectroanalysis: investigation of bismuth-film-modified glassy carbon electrodes. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 379, 277-82	4.4	50

400	CVD graphene electrochemistry: biologically relevant molecules. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 20284-8	3.6	49
399	Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sensors and Actuators B: Chemical, 2017, 252, 1045-1054	8.5	48
398	Direct electrochemistry of hemoglobin and biosensing for hydrogen peroxide using a film containing silver nanoparticles and poly(amidoamine) dendrimer. <i>Materials Science and Engineering C</i> , 2016 , 58, 97-102	8.3	48
397	A comparison of different types of gold-carbon composite electrode for detection of arsenic(III). <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 381, 979-85	4.4	48
396	Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis. <i>Royal Society Open Science</i> , 2017 , 4, 171128	3.3	47
395	Analytical methods for quantifying creatinine within biological media. <i>Sensors and Actuators B: Chemical</i> , 2013 , 183, 239-252	8.5	47
394	Disposable highly ordered pyrolytic graphite-like electrodes: Tailoring the electrochemical reactivity of screen printed electrodes. <i>Electrochemistry Communications</i> , 2010 , 12, 6-9	5.1	47
393	Nanoscale tunable proton/hydrogen sensing: evidence for surface-adsorbed hydrogen atom on architectured palladium nanoparticles. <i>Journal of the American Chemical Society</i> , 2007 , 129, 6068-9	16.4	47
392	Modification of carbon electrodes for oxygen reduction and hydrogen peroxide formation: The search for stable and efficient sonoelectrocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 992-9	9 3 .6	47
391	Voltammetric exploration and applications of ultrasonic cavitation. <i>ChemPhysChem</i> , 2003 , 4, 169-78	3.2	47
390	The fabrication of novel screen printed single-walled carbon nanotube electrodes: Electroanalytical applications. <i>Sensors and Actuators B: Chemical</i> , 2013 , 177, 1043-1052	8.5	46
389	Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 159-65	3.6	45
388	Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 78, 363-6	6	45
387	Screen-printed electrodes: Transitioning the laboratory in-to-the field. <i>Talanta Open</i> , 2021 , 3, 100032	5.6	45
386	The Oxygen Reduction Reaction at Graphene Modified Electrodes. <i>Electroanalysis</i> , 2014 , 26, 76-83	3	44
385	Recent advances in portable heavy metal electrochemical sensing platforms. <i>Environmental Science:</i> Water Research and Technology, 2020 , 6, 2676-2690	4.2	44
384	Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4103-4113	13	43
383	Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. <i>Analyst, The</i> , 2015 , 140, 7598-612	5	43

(2010-2012)

382	Printable thin film supercapacitors utilizing single crystal cobalt hydroxide nanosheets. <i>RSC Advances</i> , 2012 , 2, 1508-1515	3.7	43	
381	Ultrafast Chronoamperometry of Acoustically Agitated Solid Particulate Suspensions: Nonfaradaic and Faradaic Processes at a Polycrystalline Gold Electrode. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18391-18394	3.4	43	
380	An In Situ Copper Plated Boron-Doped Diamond Microelectrode Array for the Sensitive Electrochemical Detection of Nitrate. <i>Electroanalysis</i> , 2005 , 17, 1806-1815	3	43	
379	Screen-printed back-to-back electroanalytical sensors: heavy metal ion sensing. <i>Analyst, The</i> , 2015 , 140, 4130-6	5	42	
378	3D spongy graphene-modified screen-printed sensors for the voltammetric determination of the narcotic drug codeine. <i>Biosensors and Bioelectronics</i> , 2018 , 101, 90-95	11.8	42	
377	Polyaniline/polyacrylic acid/multi-walled carbon nanotube modified electrodes for sensing ascorbic acid. <i>Analytical Methods</i> , 2012 , 4, 118-124	3.2	42	
376	Electroanalytical sensing of nitrite at shallow recessed screen printed microelectrode arrays. <i>Analytical Methods</i> , 2010 , 2, 851	3.2	42	
375	Mesoporous-TiO2 nanoparticles based carbon paste electrodes exhibit enhanced electrochemical sensitivity for phenols. <i>Electrochemistry Communications</i> , 2009 , 11, 1990-1995	5.1	42	
374	Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 82, 490-6	6	42	
373	Sonoelectrochemistry in acoustically emulsified media. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 535, 41-47	4.1	42	
372	Electroanalytical properties of screen printed graphite microband electrodes. <i>Sensors and Actuators B: Chemical</i> , 2012 , 169, 136-143	8.5	41	
371	Screen printed electrochemical platforms for pH sensing. <i>Analytical Methods</i> , 2009 , 1, 25-28	3.2	41	
370	Understanding the Electrochemical Reactivity of Bamboo Multiwalled Carbon Nanotubes: the Presence of Oxygenated Species at Tube Ends May not Increase Electron Transfer Kinetics. <i>Electroanalysis</i> , 2006 , 18, 2137-2140	3	41	
369	Additively manufactured graphitic electrochemical sensing platforms. <i>Chemical Engineering Journal</i> , 2020 , 381, 122343	14.7	41	
368	Inexpensive and disposable copper mini-sensor modified with bismuth for lead and cadmium determination using square-wave anodic stripping voltammetry. <i>Analytical Methods</i> , 2013 , 5, 202-207	3.2	40	
367	Schiff base modified screen printed electrode for selective determination of aluminium(III) at trace level. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 17-27	8.5	40	
366	Graphene oxide gives rise to unique and intriguing voltammetry. RSC Advances, 2012, 2, 665-668	3.7	40	
365	In situ bismuth film modified screen printed electrodes for the bio-monitoring of cadmium in oral (saliva) fluid. <i>Analytical Methods</i> , 2010 , 2, 645	3.2	40	

364	Electrochemical Ammonia Gas Sensing in Nonaqueous Systems: A Comparison of Propylene Carbonate with Room Temperature Ionic Liquids. <i>Electroanalysis</i> , 2007 , 19, 2194-2201	3	40
363	Nano-electrochemical detection of hydrogen or protons using palladium nanoparticles: distinguishing surface and bulk hydrogen. <i>ChemPhysChem</i> , 2006 , 7, 1081-5	3.2	40
362	Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. <i>Talanta Open</i> , 2020 , 2, 100018	5.6	40
361	Simultaneous determination of codeine and its co-formulated drugs acetaminophen and caffeine by utilising cerium oxide nanoparticles modified screen-printed electrodes. <i>Sensors and Actuators B: Chemical</i> , 2018 , 259, 142-154	8.5	39
360	Rapid and portable electrochemical quantification of phosphorus. <i>Analytical Chemistry</i> , 2015 , 87, 4269-7	7 4 .8	38
359	Pencil drawn paper based supercapacitors. <i>RSC Advances</i> , 2016 , 6, 81130-81141	3.7	38
358	Pencil it in: pencil drawn electrochemical sensing platforms. <i>Analyst, The</i> , 2016 , 141, 4055-64	5	38
357	2D Hexagonal Boron Nitride (2D-hBN) Explored as a Potential Electrocatalyst for the Oxygen Reduction Reaction. <i>Electroanalysis</i> , 2017 , 29, 622-634	3	38
356	Facile and controllable synthesis of hydroxyapatite/graphene hybrid materials with enhanced sensing performance towards ammonia. <i>Analyst, The</i> , 2015 , 140, 5235-42	5	38
355	Electrochemistry of Q-graphene. <i>Nanoscale</i> , 2012 , 4, 6470-80	7.7	38
354	Sea cucumber-like hydroxyapatite: cation exchange membrane-assisted synthesis and its application in ultra-sensitive heavy metal detection. <i>Chemical Communications</i> , 2011 , 47, 4126-8	5.8	38
353	A Critical Review of the Electrocatalysis Reported at C60 Modified Electrodes. <i>Electroanalysis</i> , 2008 , 20, 1507-1512	3	38
352	Novel methods for the production of silver microelectrode-arrays: their characterisation by atomic force microscopy and application to the electro-reduction of halothane. <i>Analytical Sciences</i> , 2005 , 21, 667-71	1.7	38
351	Edge Plane Pyrolytic Graphite Electrodes for Stripping Voltammetry: a Comparison with Other Carbon Based Electrodes. <i>Electroanalysis</i> , 2005 , 17, 655-661	3	38
350	Calixarene bulk modified screen-printed electrodes (SPCCEs) as a one-shot disposable sensor for the simultaneous detection of lead(II), copper(II) and mercury(II) ions: Application to environmental samples. Sensors and Actuators A: Physical, 2017, 267, 517-525	3.9	37
349	Forensic electrochemistry: simultaneous voltammetric detection of MDMA and its fatal counterpart D r Death[[PMA]. <i>Analytical Methods</i> , 2016 , 8, 142-152	3.2	37
348	Forensic electrochemistry: sensing the molecule of murder atropine. <i>Analyst, The</i> , 2013 , 138, 1053-9	5	37
347	Exploring the electrical wiring of screen-printed configurations utilised in electroanalysis. <i>Analytical Methods</i> , 2015 , 7, 1208-1214	3.2	37

(2015-2006)

346	AFM studies of metal deposition: instantaneous nucleation and the growth of cobalt nanoparticles on boron-doped diamond electrodes. <i>ChemPhysChem</i> , 2006 , 7, 704-9	3.2	37
345	Electroanalytical detection of zinc in whole blood. <i>Analytica Chimica Acta</i> , 2004 , 510, 85-90	6.6	37
344	Highly Selective Sensing Platform Utilizing Graphene Oxide and Multiwalled Carbon Nanotubes for the Sensitive Determination of Tramadol in the Presence of Co-Formulated Drugs. <i>Electroanalysis</i> , 2017 , 29, 1038-1048	3	36
343	Room temperature ionic liquid assisted well-dispersed core-shell tin nanoparticles through cathodic corrosion. <i>RSC Advances</i> , 2013 , 3, 18791	3.7	36
342	Electroanalytical sensing of selenium(IV) utilising screen printed graphite macro electrodes. <i>Analytical Methods</i> , 2013 , 5, 851	3.2	36
341	Electroanalytical applications of screen printed microelectrode arrays. <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 454-462	8.5	36
340	Multi-walled carbon nanotube modified basal plane pyrolytic graphite electrodes: Exploring heterogeneity, electro-catalysis and highlighting batch to batch variation. <i>Journal of the Iranian Chemical Society</i> , 2008 , 5, 279-285	2	36
339	Oxygen reduction catalysis at anthraquinone centres molecularly wired via carbon nanotubes. <i>Journal of the Iranian Chemical Society</i> , 2005 , 2, 60-64	2	36
338	Mass-Producible 2D-MoS-Impregnated Screen-Printed Electrodes That Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction. <i>ACS Applied Materials & Demonstrate Efficient ACS Applied Materials & Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction. ACS Applied Materials & Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction. <i>ACS Applied Materials & Demonstrate Efficient Electrocatalysis</i> 10 (2017)</i>	9.5	35
337	Titanium nanoparticles (TiO)/graphene oxide nanosheets (GO): an electrochemical sensing platform for the sensitive and simultaneous determination of benzocaine in the presence of antipyrine. <i>Analyst, The</i> , 2017 , 142, 3674-3679	5	35
336	Platinum screen printed electrodes for the electroanalytical sensing of hydrazine and hydrogen peroxide. <i>Analytical Methods</i> , 2012 , 4, 1272	3.2	35
335	Ultrafast chronoamperometry of single impact events in acoustically agitated solid particulate suspensions. <i>ChemPhysChem</i> , 2006 , 7, 807-11	3.2	35
334	Cadmium detection via boron-doped diamond electrodes: surfactant inhibited stripping voltammetry. <i>Talanta</i> , 2004 , 62, 279-86	6.2	35
333	Mass-producible 2D-MoSe2 bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 74-83	5.8	34
332	An improved electrochemical creatinine detection method via a Jaffe-based procedure. <i>Analyst, The,</i> 2013 , 138, 6565-72	5	34
331	Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 108-11	9 ^{3.3}	34
330	Sensitive determination of amlodipine besylate using bare/unmodified and DNA-modified screen-printed electrodes in tablets and biological fluids. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 768-775	8.5	34
329	Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH. <i>Analytical Chemistry</i> , 2015 , 87, 11666-72	7.8	34

328	Disposable Bismuth Oxide Screen Printed Electrodes for the Sensing of Zinc in Seawater. Electroanalysis, 2010 , 22, 1455-1459	3	34
327	The electrochemical oxidation of ammonia at boron-doped diamond electrodes exhibits analytically useful signals in aqueous solutions. <i>Analyst, The</i> , 2005 , 130, 1345-7	5	34
326	Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes. <i>Analyst, The</i> , 2015 , 140, 1543-50	5	33
325	Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. <i>RSC Advances</i> , 2012 , 2, 5800	3.7	33
324	Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI). <i>Analyst, The</i> , 2009 , 134, 2301-5	5	33
323	Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. <i>Ultrasonics Sonochemistry</i> , 2007 , 14, 405-12	8.9	33
322	Ultrasound: promoting electroanalysis in difficult real world media. <i>Analyst, The</i> , 2004 , 129, 678-83	5	33
321	Non-linear optothermal properties of metal-free phthalocyanine. <i>Thin Solid Films</i> , 1999 , 350, 245-248	2.2	33
320	CVD graphene vs. highly ordered pyrolytic graphite for use in electroanalytical sensing. <i>Analyst, The</i> , 2012 , 137, 833-9	5	32
319	The Heterogeneity of Multiwalled and Single-Walled Carbon Nanotubes: Iron Oxide Impurities Can Catalyze the Electrochemical Oxidation of Glucose. <i>Electroanalysis</i> , 2009 , 21, 48-51	3	32
318	Manufacturing electrochemical platforms: Direct-write dispensing versus screen printing. <i>Electrochemistry Communications</i> , 2008 , 10, 1517-1519	5.1	32
317	Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: A sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide. <i>Talanta</i> , 2019 , 192, 471-477	6.2	32
316	Thermal Detection of Cardiac Biomarkers Heart-Fatty Acid Binding Protein and ST2 Using a Molecularly Imprinted Nanoparticle-Based Multiplex Sensor Platform. <i>ACS Sensors</i> , 2019 , 4, 2838-2845	9.2	31
315	Next-Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries. <i>Batteries and Supercaps</i> , 2019 , 2, 448-453	5.6	31
314	The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 15098-105	3.6	31
313	Screen printed recessed microelectrode arrays. Sensors and Actuators B: Chemical, 2009, 142, 342-346	8.5	31
312	Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. <i>Mikrochimica Acta</i> , 2019 , 186, 200	5.8	30
311	Metallic Free Carbon Nanotube Cluster Modified Screen Printed Electrodes for the Sensing of Nicotine in Artificial Saliva. <i>Electroanalysis</i> , 2009 , 21, 2387-2389	3	30

310	Direct oxidation of methionine at screen printed graphite macroelectrodes: Towards rapid sensing platforms. <i>Sensors and Actuators B: Chemical</i> , 2011 , 155, 831-836	8.5	30
309	Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 382, 1169-74	4.4	30
308	Pencil It in: Exploring the Feasibility of Hand-Drawn Pencil Electrochemical Sensors and Their Direct Comparison to Screen-Printed Electrodes. <i>Biosensors</i> , 2016 , 6,	5.9	30
307	The development of carbon dots: From the perspective of materials chemistry. <i>Materials Today</i> , 2021 , 51, 188-188	21.8	30
306	Freestanding Three-Dimensional Graphene Macroporous Supercapacitor. <i>ACS Applied Energy Materials</i> , 2018 , 1, 891-899	6.1	29
305	Voltammetric behaviour of free DNA bases, methylcytosine and oligonucleotides at disposable screen printed graphite electrode platforms. <i>Analyst, The</i> , 2013 , 138, 5239-49	5	29
304	Exploring the origins of the apparent "electrocatalytic" oxidation of kojic acid at graphene modified electrodes. <i>Analyst, The</i> , 2013 , 138, 4436-42	5	29
303	A facile approach for quantifying the density of defects (edge plane sites) of carbon nanomaterials and related structures. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 1210-3	3.6	29
302	Anodic Stripping Voltammetry: An AFM Study of Some Problems and Limitations. <i>Electroanalysis</i> , 2004 , 16, 345-354	3	29
301	Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors. <i>Chemosensors</i> , 2020 , 8, 5	4	28
300	Electroanalytical sensing of the antimicrobial drug linezolid utilising an electrochemical sensing platform based upon a multiwalled carbon nanotubes/bromocresol green modified carbon paste electrode. <i>Analytical Methods</i> , 2016 , 8, 4345-4353	3.2	28
299	Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 2197-204	4.4	27
298	Trace metal detection in libenik Bay, Croatia: Cadmium, lead and copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. A case study. <i>Journal of the Iranian Chemical Society</i> , 2006 , 3, 128-139	2	27
297	Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 302-311	5.8	27
296	Use of Screen-printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. <i>Electroanalysis</i> , 2018 , 30, 170-179	3	27
295	Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage Systems. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 43669-43681	9.5	27
294	Next-Generation Additive Manufacturing of Complete Standalone Sodium-Ion Energy Storage Architectures. <i>Advanced Energy Materials</i> , 2019 , 9, 1803019	21.8	26
293	Enhanced reversible redox activity of hemin on cellulose microfiber integrated reduced graphene oxide for HO biosensor applications. <i>Carbohydrate Polymers</i> , 2019 , 204, 152-160	10.3	26

292	Interpreting Electrochemistry 2014 , 23-77		26
291	Detection of theophylline utilising portable electrochemical sensors. <i>Analyst, The</i> , 2014 , 139, 2000-3	5	25
290	Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite. <i>Analyst, The</i> , 2013 , 138, 6354-64	5	25
289	Screen printed graphite electrochemical sensors for the voltammetric determination of antimony(III). <i>Analytical Methods</i> , 2013 , 5, 3490	3.2	25
288	Fabrication of co-planar screen printed microband electrodes. <i>Analyst, The</i> , 2013 , 138, 2516-21	5	25
287	Sulfite Determination at In Situ Plated Copper Modified Gold Ultramicroelectrode Arrays. <i>Electroanalysis</i> , 2006 , 18, 247-252	3	25
286	Electroanalysis of Bromate, Iodate and Chlorate at Tungsten Oxide Modified Platinum Microelectrode Arrays. <i>Electroanalysis</i> , 2006 , 18, 1672-1680	3	25
285	The ammonia-free partial reduction of substituted pyridinium salts. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 1071-84	3.9	25
284	Graphite impurities cause the observed Electrocatalysis Deen at C60 modified glassy carbon electrodes in respect of the oxidation of l-cysteine. <i>Analytica Chimica Acta</i> , 2006 , 566, 1-4	6.6	25
283	Oxidation of anthracene on platinum macro- and micro-electrodes: Sonoelectrochemical, cryoelectrochemical and sonocryoelectrochemical studies. <i>Ultrasonics Sonochemistry</i> , 2006 , 13, 126-32	8.9	25
282	Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles. <i>Molecules</i> , 2016 , 21,	4.8	25
281	Evaluating the temperature dependence of heat-transfer based detection: A case study with caffeine and Molecularly Imprinted Polymers as synthetic receptors. <i>Chemical Engineering Journal</i> , 2019 , 359, 505-517	14.7	25
280	A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 829, 230-240	4.1	25
279	Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-Etyclodextrin composite for trace-level detection of antibiotic drug metronidazole. <i>Journal of Colloid and Interface Science</i> , 2018 , 530, 37-45	9.3	25
278	Regal electrochemistry: sensing of the synthetic cathinone class of new psychoactive substances (NPSs). <i>Analytical Methods</i> , 2015 , 7, 6470-6474	3.2	24
277	Analytical monitoring of sodium borohydride. <i>Analytical Methods</i> , 2013 , 5, 829	3.2	24
276	Nickel oxide screen printed electrodes for the sensing of hydroxide ions in aqueous solutions. <i>Analytical Methods</i> , 2010 , 2, 1152	3.2	24
275	Exploration of Stable Sonoelectrocatalysis for the Electrochemical Reduction of Oxygen. <i>Electroanalysis</i> , 2005 , 17, 1025-1034	3	24

274	Novel synthesis of mesoporous hydroxyapatite using carbon nanorods as a hard-template. <i>Ceramics International</i> , 2017 , 43, 5412-5416	5.1	23	
273	Label-Free Detection of Small Organic Molecules by Molecularly Imprinted Polymer Functionalized Thermocouples: Toward In Vivo Applications. <i>ACS Sensors</i> , 2017 , 2, 583-589	9.2	23	
272	Forensic electrochemistry: indirect electrochemical sensing of the components of the new psychoactive substance "Synthacaine". <i>Analyst, The</i> , 2015 , 140, 5536-45	5	23	
271	Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of methotrexate utilizing bismuth film modified electrodes. <i>Sensors and Actuators B: Chemical</i> , 2013 , 188, 334-339	8.5	23	
270	Screen-printed palladium electroanalytical sensors. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 15	55 3 :đ 56	5223	
269	Flower-like hydroxyapatite modified carbon paste electrodes applicable for highly sensitive detection of heavy metal ions. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7552		23	
268	Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution. <i>Analytical Sciences</i> , 2006 , 22, 679-83	1.7	23	
267	l-Cysteine determination in embryo cell culture media using Co (II)-phthalocyanine modified disposable screen-printed electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 780, 303-310	4.1	23	
266	Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) explored as a potential electrochemical sensor for dopamine: surfactants significantly influence sensor capabilities. <i>Analyst, The</i> , 2017 , 142, 17	5 <i>6</i> -176	4 ²²	
265	The latest developments in the analytical sensing of methane. <i>TrAC - Trends in Analytical Chemistry</i> , 2015 , 73, 146-157	14.6	22	
264	An Overview of Recent Electroanalytical Applications Utilizing Screen-Printed Electrodes Within Flow Systems. <i>ChemElectroChem</i> , 2020 , 7, 2211-2221	4.3	22	
263	Guilty by dissociation-development of gas chromatography-mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 13 diphenidine-derived new psychoactive substances (NPSs). <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 8467-8481	4.4	22	
262	Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels. <i>Analytica Chimica Acta</i> , 2016 , 934, 1-8	6.6	22	
261	Electroanalytical Performance of a Freestanding Three-Dimensional Graphene Foam Electrode. <i>Electroanalysis</i> , 2014 , 26, 93-102	3	22	
260	Hydrodynamic electrochemistry: design for a high-speed rotating disk electrode. <i>Analytical Chemistry</i> , 2005 , 77, 1928-30	7.8	22	
259	Electroreduction of N-methylphthalimide in room temperature ionic liquids under insonated and silent conditions. <i>Ultrasonics Sonochemistry</i> , 2005 , 12, 423-8	8.9	22	
258	Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights. <i>Nanoscale</i> , 2016 , 8, 15241-51	7.7	22	
257	3D-printed Microfluidic Device Based on Cotton Threads for Amperometric Estimation of Antioxidants in Wine Samples. <i>Electroanalysis</i> , 2018 , 30, 101-108	3	22	

An experimentalist guide to electrosynthesis: the Shono oxidation. Tetrahedron Letters, 2015, 56, 6863-6867 21 256 Carbon Nanodots as Electrocatalysts towards the Oxygen Reduction Reaction. Electroanalysis, 2018 255 21 , 30, 436-444 Investigating the Integrity of Graphene towards the Electrochemical Hydrogen Evolution Reaction 254 4.9 21 (HER). Scientific Reports, **2019**, 9, 15961 Screen-printed back-to-back electroanalytical sensors. Analyst, The, 2014, 139, 5339-49 253 21 Limitations of CVD graphene when utilised towards the sensing of heavy metals. RSC Advances, 252 3.7 21 2012, 2, 5385 Conversion of egg-shell to hydroxyapatite for highly sensitive detection of endocrine disruptor 21 bisphenol A. Journal of Materials Chemistry, 2011, 21, 14428 On-site monitoring of trace levels of free manganese in sea water via sonoelectroanalysis using a 6.6 250 21 boron-doped diamond electrode. Analytica Chimica Acta, 2005, 533, 141-145 Edge Plane Pyrolytic Graphite Electrodes for Halide Detection in Aqueous Solutions. Electroanalysis 249 21 , **2005**, 17, 1627-1634 Trace manganese detection via differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms. Analyst, The, 248 5 20 2020, 145, 3424-3430 Large-scale production of CdO/Cd(OH) nanocomposites for non-enzyme sensing and 247 3.7 20 supercapacitor applications.. RSC Advances, 2018, 8, 921-930 Exploring the electrochemical performance of graphite and graphene paste electrodes composed 246 3.6 20 of varying lateral flake sizes. Physical Chemistry Chemical Physics, 2018, 20, 20010-20022 Metallic impurity free carbon nanotube paste electrodes. *Electrochemistry Communications*, **2010**, 245 5.1 20 12, 144-147 Graphite Micropowder Modified with 4-Amino-2,6-diphenylphenol Supported on Basal Plane Pyrolytic Graphite Electrodes: Micro Sensing Platforms for the Indirect Electrochemical Detection 244 3 20 of **9**-Tetrahydrocannabinol in Saliva. Electroanalysis, 2006, 18, 1063-1067 The linear sweep voltammetry of random arrays of microdisc electrodes: Fitting of experimental 243 4.1 20 data. Journal of Electroanalytical Chemistry, 2006, 592, 126-130 Analytical determination of heroin, fentanyl and fentalogues using high-performance liquid 242 19 chromatography with diode array and amperometric detection. *Analytical Methods*, **2019**, 11, 1053-1063^{3.2} Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega, 241 3.9 19 2019, 4, 1947-1954 Boron-doped diamond electrodes explored for the electroanalytical detection of 7-methylguanine 6.7 240 19 and applied for its sensing within urine samples. Electrochimica Acta, 2016, 197, 167-178 Can solvent induced surface modifications applied to screen-printed platforms enhance their 239 19 electroanalytical performance?. Analyst, The, 2016, 141, 2783-90

(2011-2018)

238	Mechanical, pH and Thermal Stability of Mesoporous Hydroxyapatite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 84-91	3.2	19
237	Back-to-Back Screen-Printed Electroanalytical Sensors: Extending the Potential Applications of the Simplistic Design. <i>Electroanalysis</i> , 2015 , 27, 2295-2301	3	19
236	Screen printed graphite macroelectrodes for the direct electron transfer of cytochrome c. <i>Analyst, The,</i> 2011 , 136, 2146-50	5	19
235	Disposable Bismuth Oxide Screen Printed Electrodes for the High Throughput Screening of Heavy Metals. <i>Electroanalysis</i> , 2009 , 21, NA-NA	3	19
234	Exploring Alkylated Ferrocene Sulfonates as Electrocatalysts for Sulfide Detection. <i>Electroanalysis</i> , 2007 , 19, 2518-2522	3	19
233	Indirect detection of substituted phenols and cannabis based on the electrochemical adaptation of the Gibbs reaction. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 383, 523-31	4.4	19
232	Polyphenol oxidase-based electrochemical biosensors: A review. <i>Analytica Chimica Acta</i> , 2020 , 1139, 198-221	6.6	19
231	Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 139, 110709	16.2	19
230	Facile synthesis of cellulose microfibers supported palladium nanospindles on graphene oxide for selective detection of dopamine in pharmaceutical and biological samples. <i>Materials Science and Engineering C</i> , 2019 , 98, 256-265	8.3	19
229	Graphene Quantum Dots Modified Screen-printed Electrodes as Electroanalytical Sensing Platform for Diethylstilbestrol. <i>Electroanalysis</i> , 2019 , 31, 838-843	3	18
228	Gold nanoparticle ensembles allow mechanistic insights into electrochemical processes. <i>ChemPhysChem</i> , 2010 , 11, 875-9	3.2	18
227	Electrochemical Determination of the Serotonin Reuptake Inhibitor, Dapoxetine, Using Cesium-Gold Nanoparticles. <i>ACS Omega</i> , 2017 , 2, 6628-6635	3.9	17
226	Detection and quantification of new psychoactive substances (NPSs) within the evolved "legal high" product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD). <i>Analyst, The</i> , 2015 , 140, 6283-94	5	17
225	Engineering molecularly imprinted polymers (MIPs) for the selective extraction and quantification of the novel psychoactive substance (NPS) methoxphenidine and its regioisomers. <i>Analyst, The</i> , 2018 , 143, 2002-2007	5	17
224	High temperature low vacuum synthesis of a freestanding three-dimensional graphene nano-ribbon foam electrode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2617-2629	13	17
223	Electrochemically triggered graphene sheets through cathodic exfoliation for lithium ion batteries anodes. <i>RSC Advances</i> , 2013 , 3, 16130	3.7	17
222	Metallic Impurities in Graphene Screen-Printed Electrodes Can Influence Their Electrochemical Properties. <i>Electroanalysis</i> , 2014 , 26, 2429-2433	3	17
221	Disposable manganese oxide screen printed electrodes for electroanalytical sensing. <i>Analytical Methods</i> , 2011 , 3, 105-109	3.2	17

220	Nille (Oxy)hydroxide Modified Graphene Additive Manufactured (3D-Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. <i>ChemElectroChem</i> , 2019 , 6, 5633-5641	4.3	17
219	A simple and fast-portable method for the screening of the appetite-suppressant drug sibutramine in natural products and multivitamins supplements. <i>Sensors and Actuators B: Chemical</i> , 2019 , 282, 449-4	45 ⁸ 5	17
218	Magnetron Sputter-Coated Nanoparticle MoS Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. <i>ACS Omega</i> , 2018 , 3, 7235-7242	3.9	17
217	Electrochemical determination of antihypertensive drugs by employing costless and portable unmodified screen-printed electrodes. <i>Talanta</i> , 2019 , 198, 447-456	6.2	16
216	One-pot synthesis of Mn3O4/graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb(II), Cd(II) and Hg(II). <i>Journal of Materials Science</i> , 2018 , 53, 4961-4973	4.3	16
215	Electrochemical utilisation of chemical vapour deposition grown carbon nanotubes as sensors. <i>Vacuum</i> , 2012 , 86, 507-519	3.7	16
214	Methane emission management in a dual-fuel engine exhaust using Pd and Ni hydroxyapatite catalysts. <i>Fuel</i> , 2017 , 208, 314-320	7.1	16
213	Surfactant-exfoliated 2D molybdenum disulphide (2D-MoS2): the role of surfactant upon the hydrogen evolution reaction. <i>RSC Advances</i> , 2017 , 7, 36208-36213	3.7	16
212	Electrode substrate innovation for electrochemical detection in microchip electrophoresis. <i>Electrophoresis</i> , 2015 , 36, 1845-53	3.6	16
211	Screen printed electrodes provide micro-domain sites for fabricating disposable electro-catalytic ensembles. <i>Electrochemistry Communications</i> , 2010 , 12, 406-409	5.1	16
210	A systematic study of the electrochemical determination of hydrogen peroxide at single-walled carbon nanotube ensemble networks. <i>Electrochemistry Communications</i> , 2008 , 10, 1872-1875	5.1	16
209	Electroanalytical Sensing of Green Tea Anticarcinogenic Catechin Compounds: Epigallocatechin Gallate and Epigallocatechin. <i>Electroanalysis</i> , 2006 , 18, 849-853	3	16
208	Computational electrochemistry: finite element simulation of a disk electrode with ultrasonic acoustic streaming. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 7843-9	3.4	16
207	Nanomodified Screen-Printed Electrode for direct determination of Aflatoxin B1 in malted barley samples. <i>Sensors and Actuators B: Chemical</i> , 2020 , 307, 127547	8.5	16
206	Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients. <i>Analyst, The</i> , 2014 , 139, 3999-4004	5	15
205	Simultaneous determination of hydrazine and phenyl hydrazine using 4?-(4-carboxyphenyl)-2,2?:6?,2? terpyridine diacetonitrile triphenylphosphine ruthenium(II) tetrafluoroborate complex functionalized multiwalled carbon nanotubes modified electrode.	5.1	15
204	Identification of microbial volatile organic compounds (MVOCs) emitted from fungal isolates found on cinematographic film. <i>Analytical Methods</i> , 2012 , 4, 1265	3.2	15
203	Exploring the electrochemical behavior of screen printed graphite electrodes in a room temperature ionic liquid. <i>RSC Advances</i> , 2012 , 2, 7735	3.7	15

202	Electroanalytical properties of screen printed shallow recessed electrodes. <i>Analytical Methods</i> , 2012 , 4, 3140	3.2	15
201	The underlying electrode causes the reported Electro-catalysis labserved at C60-modified glassy carbon electrodes in the case of N-(4-hydroxyphenyl) ethanamide and salbutamol. <i>Electrochimica Acta</i> , 2008 , 53, 5885-5890	6.7	15
200	The Direct Electrochemical Oxidation of Ammonia in Propylene Carbonate: A Generic Approach to Amperometric Gas Sensors. <i>Electroanalysis</i> , 2006 , 18, 449-455	3	15
199	Exploration of gas sensing possibilities with edge plane pyrolytic graphite electrodes: nitrogen dioxide detection. <i>Analyst, The</i> , 2005 , 130, 280-2	5	15
198	Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction. <i>Nanoscale</i> , 2020 , 12, 18214-18224	7.7	15
197	Indirect electroanalytical detection of phenols. <i>Analyst, The</i> , 2015 , 140, 3244-50	5	14
196	Green electrochemical sensing platforms: utilizing hydroxyapatite derived from natural fish scales as a novel electrochemical material for the sensitive detection of kidney injury molecule 1 (KIM-1). <i>Analyst, The</i> , 2014 , 139, 5362-6	5	14
195	Voltammetric Behaviour of 7-Methylguanine Using Screen-printed Graphite Electrodes: towards a Guanine Methylation Electrochemical Sensor. <i>Electroanalysis</i> , 2015 , 27, 2766-2772	3	14
194	Spice up your life: screening the illegal components of BpiceIherbal products. <i>Analytical Methods</i> , 2010 , 2, 614	3.2	14
193	Synthesis and characterisation of water soluble ferrocenes: Molecular tuning of redox potentials. Journal of Organometallic Chemistry, 2007 , 692, 5173-5182	2.3	14
192	Surfactant-free emulsion electrosynthesis via power ultrasound: electrocatalytic formation of carbonflarbon bonds. <i>Green Chemistry</i> , 2002 , 4, 570-577	10	14
191	Structure and morphology of phthalocyanine films grown in electrical fields by vapor deposition. <i>Journal of Crystal Growth</i> , 2000 , 211, 308-312	1.6	14
190	MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 16069-16078	6.7	13
189	Graphene Oxide Bulk-Modified Screen-Printed Electrodes Provide Beneficial Electroanalytical Sensing Capabilities. <i>Biosensors</i> , 2020 , 10,	5.9	13
188	A screen-printed electrochemical sensing platform surface modified with nanostructured ytterbium oxide nanoplates facilitating the electroanalytical sensing of the analgesic drugs acetaminophen and tramadol. <i>Mikrochimica Acta</i> , 2020 , 187, 126	5.8	13
187	Screen-printed graphite macroelectrodes for the direct electron transfer of cytochrome c: a deeper study of the effect of pH on the conformational states, immobilization and peroxidase activity. <i>Analyst, The</i> , 2014 , 139, 1442-8	5	13
186	Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. <i>Analyst, The</i> , 2012 , 137, 420-3	5	13
185	Amperometric detection of glucose using self-catalytic carbon paste electrodes. <i>Analyst, The</i> , 2004 , 129, 428-31	5	13

184	The search for stable and efficient sonoelectrocatalysts for oxygen reduction and hydrogen peroxide formation: azobenzene and derivatives. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 4034-40	4³ ^{.6}	13
183	Portable electrochemical system using screen-printed electrodes for monitoring corrosion inhibitors. <i>Talanta</i> , 2017 , 174, 420-427	6.2	12
182	Disposable screen-printed electrodes modified with uniform iron oxide nanocubes for the simple electrochemical determination of meclizine, an antihistamine drug. <i>Analytical Methods</i> , 2019 , 11, 282-2	28 7 .2	12
181	Highly sensitive and selective determination of dopamine using screen-printed electrodes modified with nanocomposite of N?-phenyl-p-phenylenediamine/multiwalled carbon nanotubes/nafion. Materials Research Bulletin, 2018, 101, 253-263	5.1	12
180	addition of graphitic carbon into a NiCoO/CoO composite: enhanced catalysis toward the oxygen evolution reaction <i>RSC Advances</i> , 2019 , 9, 24995-25002	3.7	12
179	An anthraquinone moiety/cysteamine functionalized-gold nanoparticle/chitosan based nanostructured composite for the electroanalytical detection of dissolved oxygen within aqueous media. <i>Analytical Methods</i> , 2014 , 6, 8793-8801	3.2	12
178	Nitrogen doped nanoporous graphene: an efficient metal-free electrocatalyst for the oxygen reduction reaction. <i>RSC Advances</i> , 2017 , 7, 55555-55566	3.7	12
177	Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids. <i>Sensors</i> , 2017 , 17,	3.8	12
176	"Cosmetic electrochemistry": the facile production of graphite microelectrode ensembles. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2285-7	3.6	12
175	Misinterpretations of the electro-catalysis observed at C60 modified glassy carbon electrodes for the determination of Atenolol. <i>Electrochemistry Communications</i> , 2008 , 10, 1633-1635	5.1	12
174	Electrochemical Response of Cobalt(II) in the Presence of Ammonia. <i>Electroanalysis</i> , 2006 , 18, 44-52	3	12
173	Screen Printed Electrodes and Screen Printed Modified Electrodes Benefit from Insonation. <i>Electroanalysis</i> , 2006 , 18, 928-930	3	12
172	Liquid II quid processes and kinetics in acoustically emulsified media. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1652-1656	3.6	12
171	Metabolism Mimicry: An Electrosynthetic Method for the Selective Deethylation of Tertiary Benzamides. <i>ChemElectroChem</i> , 2019 , 6, 4284-4291	4.3	12
170	A low cost, versatile and chromatographic device for microfluidic amperometric analyses. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 127117	8.5	12
169	Electroanalytical overview: utilising micro- and nano-dimensional sized materials in electrochemical-based biosensing platforms. <i>Mikrochimica Acta</i> , 2021 , 188, 268	5.8	12
168	Additive manufacturing for electrochemical labs: An overview and tutorial note on the production of cells, electrodes and accessories. <i>Talanta Open</i> , 2021 , 4, 100051	5.6	12
167	Voltammetric determination of meclizine antihistamine drug utilizing graphite screen-printed electrodes in physiological medium. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 824, 39-44	4.1	11

166	A voltammetric method for Fe(iii) in blood serum using a screen-printed electrode modified with a Schiff base ionophore. <i>Analyst, The</i> , 2018 , 143, 2851-2861	5	11
165	Incorporation of Tetrazolium Blue (TB)/Gold Nanoparticles (GNPs) into Carbon Paste Electrode: Application as an Electrochemical Sensor for the Sensitive and Selective Determination of Sotalol in Micellar Medium. <i>Electroanalysis</i> , 2017 , 29, 2551-2558	3	11
164	Design of screen-printed bulk modified electrodes using anthraquinoneBysteamine functionalized gold nanoparticles and their application to the detection of dissolved oxygen. <i>Analytical Methods</i> , 2015 , 7, 2020-2027	3.2	11
163	Crime scene investigation III: Exploring the effects of drugs of abuse and neurotransmitters on Bloodstain Pattern Analysis. <i>Analytical Methods</i> , 2012 , 4, 721	3.2	11
162	At point of use sono-electrochemical generation of hydrogen peroxide for chemical synthesis: the green oxidation of benzonitrile to benzamide. <i>Ultrasonics Sonochemistry</i> , 2007 , 14, 113-6	8.9	11
161	Chloride Determination in Ionic Liquids. ACS Symposium Series, 2005, 244-258	0.4	11
160	Toward the Rapid Diagnosis of Sepsis: Detecting Interleukin-6 in Blood Plasma Using Functionalized Screen-Printed Electrodes with a Thermal Detection Methodology. <i>Analytical Chemistry</i> , 2021 , 93, 5931	- 3 938	11
159	Thermal decomposition kinetics of the antiparkinson drug Entacapone Linder isothermal and non-isothermal conditions. <i>Journal of Thermal Analysis and Calorimetry</i> , 2017 , 130, 2359-2367	4.1	10
158	Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO nanowires. <i>Scientific Reports</i> , 2019 , 9, 12814	4.9	10
157	The preparation of hydroxyapatite from unrefined calcite residues and its application for lead removal from aqueous solutions <i>RSC Advances</i> , 2019 , 9, 4054-4062	3.7	10
156	An innovative electrochemical platform for the sensitive determination of the hepatitis B inhibitor Entecavir with ionic liquid as a mediator. <i>Journal of Molecular Liquids</i> , 2020 , 302, 112498	6	10
155	Exploring the applicability of equine blood to bloodstain pattern analysis. <i>Medicine, Science and the Law,</i> 2016 , 56, 190-9	1.1	10
154	Utilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide. <i>Analyst, The</i> , 2016 , 141, 1233-8	5	10
153	Amino-thiacalix[4]arene modified screen-printed electrodes as a novel electrochemical interface for Hg(II) quantification at a pico-molar level. <i>Analytical Methods</i> , 2017 , 9, 6747-6753	3.2	10
152	An overview of quantifying and screening drugs of abuse in biological samples: Past and present. <i>Analytical Methods</i> , 2011 , 3, 1227	3.2	10
151	Electrochemistry Inside Microdroplets of Kerosene: Electroanalysis of (Methylcyclopentadienyl) Manganese(I) Tricarbonyl(I). <i>Electroanalysis</i> , 2006 , 18, 621-626	3	10
150	Tagging of Model Amphetamines with Sodium 1,2-Naphthoquinone-4-sulfonate: Application to the Indirect Electrochemical Detection of Amphetamines in Oral (Saliva) Fluid. <i>Electroanalysis</i> , 2006 , 18, 183	33-183	7 ¹⁰
149	Sonoelectroanalysis in Acoustically Emulsified Media: Zinc and Cadmium. <i>Electroanalysis</i> , 2004 , 16, 852-	8 \$ 9	10

148	The effects of blood conditioning films on the antimicrobial and retention properties of zirconium-nitride silver surfaces. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 173, 303-311	6	10
147	Facile synthesis of Ni/NiO nanocomposites: the effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media <i>RSC Advances</i> , 2021 , 11, 14654-14664	3.7	10
146	Disposable screen printed electrode modified with imine receptor having a wedge bridge for selective detection of Fe (II) in aqueous medium. <i>Sensors and Actuators B: Chemical</i> , 2017 , 249, 467-477	8.5	9
145	Quick Test for Determination of N-Bombs (Phenethylamine Derivatives, NBOMe) Using High-Performance Liquid Chromatography: A Comparison between Photodiode Array and Amperometric Detection. <i>ACS Omega</i> , 2019 , 4, 14439-14450	3.9	9
144	Effects of surfactant on morphology, chemical properties and catalytic activity of hydroxyapatite. Journal of Solid State Chemistry, 2019 , 276, 345-351	3.3	9
143	Nonenzymatic sensor for determination of glucose in blood plasma based on nickel oxyhydroxide in a microfluidic system of cotton thread. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 840, 153-159	4.1	9
142	Antimicrobial activity of Ti-ZrN/Ag coatings for use in biomaterial applications. <i>Scientific Reports</i> , 2018 , 8, 1497	4.9	9
141	Transition Metal Oxides as Supercapacitor Materials. <i>Nanostructure Science and Technology</i> , 2016 , 317-3	8 44 9	9
140	Single and combined antimicrobial efficacies for nine metal ion solutions against Klebsiella pneumoniae, Acinetobacter baumannii and Enterococcus faecium. <i>International Biodeterioration and Biodegradation</i> , 2019 , 141, 39-43	4.8	9
139	Development of a carbon nanotube paste electrode modified with zinc phosphate for captopril determination in pharmaceutical and biological samples. <i>Analytical Methods</i> , 2014 , 6, 1324	3.2	9
138	Preliminary study on the effect of heated surfaces upon bloodstain pattern analysis. <i>Journal of Forensic Sciences</i> , 2013 , 58, 1289-96	1.8	9
137	Crime scene investigation: The effect of drug contaminated bloodstains on bloodstain pattern analysis. <i>Analytical Methods</i> , 2010 , 2, 1885	3.2	9
136	Electrolytically fabricated microrods on screen printed graphite electrodes: Electro-catalyticoxidation of alcohols. <i>Analytical Methods</i> , 2011 , 3, 74-77	3.2	9
135	Multiwalled Carbon Nanotubes Resist Intercalation Whereas Pyrolytic Graphite Can Exfoliate in Propylene Carbonate: Electroanalysis Without the Deleterious Effects of Intercalation for the Detection of Ammonia. <i>Electroanalysis</i> , 2006 , 18, 2141-2147	3	9
134	Abrasively modified electrodes: mathematical modelling and numerical simulation of electrochemical dissolution/growth processes under cyclic voltammetric conditions. <i>Journal of Solid State Electrochemistry</i> , 2006 , 10, 857-864	2.6	9
133	Effect of Cu(II) on the electrochemically initiated reaction of thiols with N, N-diethyl-p-phenylenediamine: methodology for the indirect voltammetric determination of Cu(II). <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 379, 707-13	4.4	9
132	Ultrasonically induced phthalocyanine degradation: decolouration vs. metal release. <i>Ultrasonics Sonochemistry</i> , 2004 , 11, 327-31	8.9	9
131	Twittering About Research: A Case Study of the World's First Twitter Poster Competition. <i>F1000Research</i> , 2015 , 4, 798	3.6	9

130	Functionalized Co3O4 graphitic nanoparticles: A high performance electrocatalyst for the oxygen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 31380-31388	6.7	9
129	Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. <i>Analytica Chimica Acta</i> , 2021 , 1166, 338548	6.6	9
128	Immobilization of Molecularly Imprinted Polymer Nanoparticles onto Surfaces Using Different Strategies: Evaluating the Influence of the Functionalized Interface on the Performance of a Thermal Assay for the Detection of the Cardiac Biomarker Troponin I. ACS Applied Materials & Cardiac Biomarker Troponin I. ACS Applied Materials & Cardiac Biomarker Troponin I. ACS Applied Materials & Cardiac Biomarker Troponin II.	9.5	9
127	Interfaces, 2021 , 13, 27868-27879 High Yield Synthesis of Hydroxyapatite (HAP) and Palladium Doped HAP via a Wet Chemical Synthetic Route. <i>Catalysts</i> , 2016 , 6, 119	4	9
126	Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 663-672	4.4	9
125	Electrochemical Portable Method for on site Screening of Scopolamine in Beverage and Urine Samples. <i>Electroanalysis</i> , 2018 , 31, 567	3	9
124	Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. <i>Biosensors</i> , 2021 , 11,	5.9	9
123	Electrospun Nylon Fibers with Integrated Polypyrrole Molecularly Imprinted Polymers for the Detection of Glucose. <i>Analytical Chemistry</i> , 2021 , 93, 13235-13241	7.8	9
122	Sodium-Ion Batteries: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life (Adv. Mater. 47/2015). <i>Advanced Materials</i> , 2015 , 27, 7895-7895	24	8
121	Conversion of natural egg-shell to 3D flower-like hydroxyapatite agglomerates for highly sensitive detection of As3 + ions. <i>Materials Letters</i> , 2012 , 78, 120-123	3.3	8
120	Solid carbon nanorod whiskers: application to the electrochemical sensing of biologically relevant molecules. <i>RSC Advances</i> , 2011 , 1, 93	3.7	8
119	High throughput screening of lead utilising disposable screen printed shallow recessed microelectrode arrays. <i>Analyst, The</i> , 2010 , 135, 76-9	5	8
118	Acoustically fabricated random microelectrode assemblies. <i>Ultrasonics Sonochemistry</i> , 2006 , 13, 261-70	8.9	8
117	Sonoelectrochemistry in Acoustically Emulsified Media: The Detection of Lead. <i>Electroanalysis</i> , 2003 , 15, 1661-1666	3	8
116	Cryoelectrochemistry: electrochemical reduction of 2(RS)-methyl 1-(tert-butoxycarbonyl)-2-iodomethyl-2,5-dihydropyrrole-2-carboxylate. <i>Tetrahedron</i> , 2005 , 61, 2365-23	72 4	8
115	Electroanalytical overview: the pungency of chile and chilli products determined the sensing of capsaicinoids. <i>Analyst, The</i> , 2021 , 146, 2769-2783	5	8
114	Ball mill and microwave assisted synthetic routes to Fluoxetine. <i>Sustainable Chemistry and Pharmacy</i> , 2017 , 5, 14-21	3.9	7
113	Mass-producible 2D-WS bulk modified screen printed electrodes towards the hydrogen evolution reaction <i>RSC Advances</i> , 2019 , 9, 25003-25011	3.7	7

112	Versatile additively manufactured (3D printed) wall-jet flow cell for high performance liquid chromatography-amperometric analysis: application to the detection and quantification of new psychoactive substances (NBOMes). <i>Analytical Methods</i> , 2020 , 12, 2152-2165	3.2	7
111	Thermistors coated with molecularly imprinted nanoparticles for the electrical detection of peptides and proteins. <i>Analyst, The</i> , 2020 , 145, 5419-5424	5	7
110	Heat-Transfer Method: A Thermal Analysis Technique for the Real-Time Monitoring of Growth in Buffered Solutions and Digestate Samples <i>ACS Applied Bio Materials</i> , 2019 , 2, 3790-3798	4.1	7
109	Investigating the Integrity of Graphene towards the Electrochemical Oxygen Evolution Reaction. <i>ChemElectroChem</i> , 2019 , 6, 5446-5453	4.3	7
108	Antibody-modified hydroxyapatite surfaces for the efficient capture of bladder cancer cells in a patient's urine without recourse to any sample pre-treatment. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 8125-8132	7.3	7
107	Determination of tadalafil in pharmaceutical samples by vertically oriented multi-walled carbon nanotube electrochemical sensing device. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 877, 114501	4.1	7
106	MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms. <i>Advanced Energy Materials</i> , 2021 , 11, 2100433	21.8	7
105	Approaches to the Rational Design of Molecularly Imprinted Polymers Developed for the Selective Extraction or Detection of Antibiotics in Environmental and Food Samples. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2021 , 218, 2100021	1.6	7
104	The Mediatorless Electroanalytical Sensing of Sulfide Utilizing Unmodified Graphitic Electrode Materials. <i>Journal of Carbon Research</i> , 2016 , 2, 14	3.3	7
103	Electrochemically Reduced Graphene Oxide as Screen-printed Electrode Modifier for Fenamiphos Determination. <i>Electroanalysis</i> , 2020 , 32, 1689-1695	3	7
102	Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. <i>Analytical Methods</i> , 2021 , 13, 2812-2	3.2 822	7
101	Electrochemical Improvements Can Be Realized via Shortening the Length of Screen-Printed Electrochemical Platforms. <i>Analytical Chemistry</i> , 2021 ,	7.8	7
100	New electrochemical approach for the measurement of oxidative DNA damage: Voltammetric determination of 8-oxoguanine at screen-printed graphite electrodes. <i>Sensors and Actuators B: Chemical</i> , 2017 , 247, 896-902	8.5	6
99	The influence of lateral flake size in graphene/graphite paste electrodes: an electroanalytical investigation. <i>Analytical Methods</i> , 2020 , 12, 2133-2142	3.2	6
98	Fast Determination of Antioxidant Capacity of Food Samples Using Continuous Amperometric Detection on Polyester Screen-printed Graphitic Electrodes. <i>Electroanalysis</i> , 2018 , 30, 1192-1197	3	6
97	Screen-Printing Electrochemical Architectures. <i>SpringerBriefs in Applied Sciences and Technology</i> , 2016 ,	0.4	6
96	Can Ultrasound or pH Influence Pd Distribution on the Surface of HAP to Improve Its Catalytic Properties in the Dry Reforming of Methane?. <i>Catalysis Letters</i> , 2017 , 147, 2200-2208	2.8	6
95	Development of a novel analytical approach combining the quantification of amino acids, organic acids and glucose using HPLC-UV-Vis and HPLC-MS with screening viaNMR. <i>Analytical Methods</i> , 2012 , 4, 284-290	3.2	6

(2004-2013)

94	Ultra Flexible Paper Based Electrochemical Sensors: Effect of Mechanical Contortion upon Electrochemical Performance. <i>Electroanalysis</i> , 2013 , 25, n/a-n/a	3	6
93	Cosmetic Electrochemistry II: Rapid and Facile Production of Metallic Electrocatalytic Ensembles. <i>Electroanalysis</i> , 2010 , 22, 1831-1836	3	6
92	An Electrochemical Study of Immobilized Ruthenocene in Aqueous Media. <i>Electroanalysis</i> , 2007 , 19, 55	5- \$ 60	6
91	The Electrochemistry of Tetraphenyl Porphyrin Iron(III) Within Immobilized Droplets Supported on Platinum Electrodes. <i>Electroanalysis</i> , 2006 , 18, 649-654	3	6
90	Sonovoltammetric Elucidation of Electron Transfer Rates: The Oxidation of Dimethyl-p-phenylenediamine in Aqueous Solution. <i>Electroanalysis</i> , 2003 , 15, 243-248	3	6
89	2D MATERIALS		6
88	Fundamentals of Screen-Printing Electrochemical Architectures. <i>SpringerBriefs in Applied Sciences and Technology</i> , 2016 , 13-23	0.4	6
87	Tailoring the electrochemical properties of 2D-hBN via physical linear defects: physicochemical, computational and electrochemical characterisation. <i>Nanoscale Advances</i> , 2020 , 2, 264-273	5.1	6
86	Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. <i>Nanoscale Advances</i> , 2020 , 2, 5319-5328	5.1	6
85	A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs. <i>Analyst, The</i> , 2018 , 143, 3360-3365	5	6
84	Multi-dimensional hydroxyapatite (HAp) nanocluster architectures fabricated via Nafion-assisted biomineralization. <i>New Journal of Chemistry</i> , 2015 , 39, 750-754	3.6	5
83	Development of a Flexible MIP-Based Biosensor Platform for the Thermal Detection of Neurotransmitters. <i>MRS Advances</i> , 2018 , 3, 1569-1574	0.7	5
82	An Introduction to Forensic Electrochemistry 2016 , 89-102		5
81	Evaluating the potential of thermal read-out techniques combined with molecularly imprinted polymers for the sensing of low-weight organic molecules. <i>Journal of Molecular Recognition</i> , 2017 , 30, e2563	2.6	5
80	Exploring the effect of specific packed cell volume upon bloodstain pattern analysis: blood drying and dry volume estimation. <i>Journal of the Canadian Society of Forensic Science</i> , 2015 , 48, 167-189	0.5	5
79	Quantification of corrosion inhibitors used in the water industry for steam condensate treatment: the indirect electroanalytical sensing of morpholine and cyclohexylamine. <i>Environmental Science:</i> Water Research and Technology, 2015 , 1, 40-46	4.2	5
78	Cubic Copper Hexacyanoferrates Nanoparticles: Facile Template-Free Deposition and Electrocatalytic Sensing Towards Hydrazine. <i>International Journal of Electrochemistry</i> , 2011 , 2011, 1-5	2.4	5
77	Electroanalytical Determination of Zinc in Human Blood Facilitated by Acoustically Assisted Double Extraction. <i>Electroanalysis</i> , 2004 , 16, 596-598	3	5

76	Electroanalytical overview: the electroanalytical sensing of hydrazine. Sensors & Diagnostics,		5
75	Metal ions and graphene-based compounds as alternative treatment options for burn wounds infected by antibiotic-resistant Pseudomonas aeruginosa. <i>Archives of Microbiology</i> , 2020 , 202, 995-1004	, 3	5
74	Molybdenum Disulfide Surfaces to Reduce and Biofilm Formation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 21057-21069	9.5	5
73	All-in-One Single-Print Additively Manufactured Electroanalytical Sensing Platforms. <i>ACS Measurement Science Au</i> ,		5
72	Reprint of: l-Cysteine determination in embryo cell culture media using Co (II)-phthalocyanine modified disposable screen-printed electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 793, 77-84	4.1	4
71	Pseudo Cavity of Schiff Base Ionophore Incorporated in Screen Printed Electrode for Sensing of Zn (II). <i>Journal of the Electrochemical Society</i> , 2019 , 166, B464-B471	3.9	4
70	A fluorescence-quenching platform based on biomineralized hydroxyapatite from natural seashell and applied to cancer cell detection. <i>Scientific Reports</i> , 2014 , 4, 7556	4.9	4
69	Influence of the metal/metal oxide redox cycle on the catalytic activity of methane oxidation over Pd and Ni doped hydroxyapatite. <i>Catalysis Communications</i> , 2018 , 107, 82-86	3.2	4
68	Bloodstain pattern analysis: looking at impacting blood from a different angle. <i>Australian Journal of Forensic Sciences</i> , 2013 , 45, 85-102	1.1	4
67	Acid-free co-operative self-assembly of graphene-ZnO nanocomposites and its defect mediated visible light photocatalytic activities. <i>Physica B: Condensed Matter</i> , 2017 , 506, 32-41	2.8	4
66	Crime scene investigation II: The effect of warfarin on bloodstain pattern analysis. <i>Analytical Methods</i> , 2011 , 3, 1521	3.2	4
65	Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge-Plane Sites and Tube Ends Are the Reactive Sites. <i>ChemInform</i> , 2005 , 36, no		4
64	Twittering About Research: A Case Study of the World First Twitter Poster Competition. <i>F1000Research</i> , 4, 798	3.6	4
63	Voltammetric Behaviour of Drug Molecules as a Predictor of Metabolic Liabilities. <i>Scientia Pharmaceutica</i> , 2020 , 88, 46	4.3	4
62	COVID-19: additive manufacturing response in the UK. <i>Journal of 3D Printing in Medicine</i> , 2020 , 4, 167-1	74 5	4
61	Enhancing the efficiency of the hydrogen evolution reaction utilising FeP bulk modified screen-printed electrodes the application of a magnetic field <i>RSC Advances</i> , 2021 , 11, 8073-8079	3.7	4
60	Additive manufactured graphene-based electrodes exhibit beneficial performances in Pseudomonas aeruginosa microbial fuel cells. <i>Journal of Power Sources</i> , 2021 , 499, 229938	8.9	4
59	Electropolymerised molecularly imprinted polymers for the heat-transfer based detection of microorganisms: A proof-of-concept study using yeast. <i>Thermal Science and Engineering Progress</i> , 2021 , 24, 100956	3.6	4

58	Molecularly Imprinted Polymer Nanoparticles Enable Rapid, Reliable, and Robust Point-of-Care Thermal Detection of SARS-CoV-2 <i>ACS Sensors</i> , 2022 ,	9.2	4
57	Graphene and Graphene Oxide for Energy Storage 2017 , 725-744		3
56	Electrochemical Decoration of Additively Manufactured Graphene Macroelectrodes with MoO2 Nanowires: An Approach to Demonstrate the Surface Morphology. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 15377-15385	3.8	3
55	Three-dimensional (3D) scanning and additive manufacturing (AM) allows the fabrication of customised crutch grips. <i>Materials Today Communications</i> , 2020 , 25, 101225	2.5	3
54	Graphene Encapsulated Silicon Carbide Nanocomposites for High and Low Power Energy Storage Applications. <i>Journal of Carbon Research</i> , 2017 , 3, 20	3.3	3
53	Graphene Applications 2014 , 127-174		3
52	Electrochemical Devices for Monitoring Biomarkers in Embryo Development. <i>Electrochimica Acta</i> , 2014 , 140, 42-48	6.7	3
51	Graphene for Energy Production and Storage Applications 2013 , 133-170		3
50	A Facile and Cost-effective Electroanalytical Strategy for the Quantification of Deoxyguanosine and Deoxyadenosine in Oligonucleotides Using Screen-printed Graphite Electrodes. <i>Electroanalysis</i> , 2016 , 28, 3066-3074	3	3
49	Rapid antibiotic susceptibility testing using resazurin bulk modified screen-printed electrochemical sensing platforms. <i>Analyst, The</i> , 2021 , 146, 5574-5583	5	3
48	Batch-injection Amperometric Analysis on Screen-printed Electrodes: Analytical System for High-throughput Determination of Pharmaceutical Molecules. <i>Electroanalysis</i> , 2018 , 31, 518	3	3
47	Investigating structure-property relationships of biomineralized calcium phosphate compounds as fluorescent quenching-recovery platform. <i>Royal Society Open Science</i> , 2018 , 5, 170877	3.3	2
46	Nanoparticle modified electrodes for trace metal ion analysis 2014 , 54-79		2
45	Fingerprinting Breath: Electrochemical Monitoring of Markers Indicative of BacteriaMycobacterium tuberculosisInfection. <i>Journal of the Brazilian Chemical Society</i> , 2014 ,	1.5	2
44	Screen Printed Electrodes Open New Vistas in Sensing: Application to Medical Diagnosis. <i>Modern Aspects of Electrochemistry</i> , 2013 , 83-120		2
43	Introduction to Graphene 2014 , 1-22		2
42	An oxygen pumping anode for electrowinning aluminium. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 6350-4	3.6	2
41	Plaster-trodes for electro-analytical sensing via electrodeposition with electro-catalytic metals. <i>Analyst, The</i> , 2011 , 136, 1153-6	5	2

40	Graphene Matrices as Carriers for Metal Ions against Antibiotic Susceptible and Resistant Bacterial Pathogens. <i>Coatings</i> , 2021 , 11, 352	2.9	2
39	Effectiveness of titanium nitride silver coatings against Staphylococcus spp. in the presence of BSA and whole blood conditioning agents. <i>International Biodeterioration and Biodegradation</i> , 2019 , 141, 44-	5¶.8	2
38	Electroanalytical overview: The electroanalytical detection of theophylline. <i>Talanta Open</i> , 2021 , 3, 1000	03 5 7 .6	2
37	Electrochemical Overview: A Summary of ACoxMnyNizO2 and Metal Oxides as Versatile Cathode Materials for Metal-Ion Batteries. <i>Advanced Functional Materials</i> ,2107761	15.6	2
36	The effect of TiO2 coatings on the formation of ozone and nitrogen oxides in non-thermal atmospheric pressure plasma. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106046	6.8	2
35	Perspective: What constitutes a quality paper in electroanalysis?. <i>Talanta Open</i> , 2021 , 4, 100065	5.6	2
34	Electroanalytical overview: screen-printed electrochemical sensing platforms for the detection of vital cardiac, cancer and inflammatory biomarkers. <i>Sensors & Diagnostics</i> ,		2
33	Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine a review <i>Mikrochimica Acta</i> , 2022 , 189, 142	5.8	2
32	A comparison of waste education in schools and colleges across five European cities. <i>International Journal of Sustainable Development and World Ecology</i> ,1-11	3.8	2
31	In-vitro Study of Effect of the Design of the Stent on the Arterial Waveforms. <i>Procedia Structural Integrity</i> , 2019 , 15, 33-40	1	1
30	Regal electrochemistry: British 5 pence coins provide useful metallic macroelectrode substrates. <i>Analyst, The</i> , 2015 , 140, 6477-80	5	1
29	Recent Advances in Bloodstain Pattern Analysis 2016 , 263-281		1
28	Sonoelectrochemical Production of Nanomaterials 2012 , 283-300		1
27	Sonoelectroanalysis: An Overview 2012 , 79-99		1
26	The electrochemistry of arylated anthraquinones in room temperature ionic liquids. <i>Journal of Physical Organic Chemistry</i> , 2013 , 26, 367-375	2.1	1
25	Prussian Blue Modified Solid Carbon Nanorod Whisker Paste Composite Electrodes: Evaluation towards the Electroanalytical Sensing of H2O2. <i>International Journal of Electrochemistry</i> , 2012 , 2012, 1-7	2.4	1
24	Electrochemical characterisation of novel water-soluble ruthenocene complexes: An anion-dependent response. <i>Electrochemistry Communications</i> , 2007 , 9, 1451-1455	5.1	1
23	Influence of design and material characteristics on 3D printed flow-cells for heat transfer-based analytical devices <i>Mikrochimica Acta</i> , 2022 , 189, 73	5.8	1

22	Diamine Oxidase-Conjugated Multiwalled Carbon Nanotubes to Facilitate Electrode Surface Homogeneity <i>Sensors</i> , 2022 , 22,	3.8	1
21	Nano-molecularly imprinted polymers for serum creatinine sensing using the heat transfer method. <i>Talanta Open</i> , 2022 , 5, 100087	5.6	1
20	Reviewing the use of chitosan and polydopamine for electrochemical sensing. <i>Current Opinion in Electrochemistry</i> , 2021 , 32, 100885	7.2	1
19	Nanosized nickel hexacyanoferrate modified screen-printed electrodes as flexible supercabattery platforms: Influence of annealing temperatures and supporting electrolytes. <i>Journal of Energy Storage</i> , 2022 , 46, 103872	7.8	1
18	Microelectrode Designs137-168		1
17	Symmetrical Derivative of Anthrone as a Novel Receptor for Mercury Ions: Enhanced Performance of Modified Screen-Printed Electrode. <i>Journal of Carbon Research</i> , 2021 , 7, 13	3.3	1
16	Graphene-Based Electrochemical Sensors. Springer Series on Chemical Sensors and Biosensors, 2018, 141	-164	1
15	Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care. <i>Sensors</i> , 2021 , 21,	3.8	1
14	Glassy Carbon Electrode Modified with Layering of Carbon Black/Poly(Allylamine Hydrochloride) Composite for Multianalyte Determination. <i>Electroanalysis</i> , 2021 , 33, 526-536	3	1
13	2D materials as the basis of supercapacitor devices 2020 , 97-130		O
13	2D materials as the basis of supercapacitor devices 2020 , 97-130 The Electrochemistry of Graphene 2014 , 79-126		0
		7.1	
12	The Electrochemistry of Graphene 2014 , 79-126 Inherent characteristics of ultra-photosensitive Al/Cu\(\textbf{CeO2/p-Si}\) metal oxide semiconductor	7.1 5.6	0
12	The Electrochemistry of Graphene 2014, 79-126 Inherent characteristics of ultra-photosensitive Al/CuteO2/p-Si metal oxide semiconductor diodes. <i>Journal of Materials Chemistry C</i> , 2022, 10, 1445-1457 Electroanalytical overview: The detection of the molecule of murder atropine. <i>Talanta Open</i> , 2021,	<u> </u>	0
12 11 10	The Electrochemistry of Graphene 2014, 79-126 Inherent characteristics of ultra-photosensitive Al/CuteO2/p-Si metal oxide semiconductor diodes. <i>Journal of Materials Chemistry C</i> , 2022, 10, 1445-1457 Electroanalytical overview: The detection of the molecule of murder atropine. <i>Talanta Open</i> , 2021, 4, 100073 Introduction and Current Applications of Screen-Printed Electrochemical Architectures.	5.6	OOO
12 11 10	The Electrochemistry of Graphene 2014, 79-126 Inherent characteristics of ultra-photosensitive Al/CuteO2/p-Si metal oxide semiconductor diodes. Journal of Materials Chemistry C, 2022, 10, 1445-1457 Electroanalytical overview: The detection of the molecule of murder atropine. Talanta Open, 2021, 4, 100073 Introduction and Current Applications of Screen-Printed Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology, 2016, 1-12 Application of botryosphaeran as a carbon black adherent on a glassy carbon electrode for the	5.6	oooo
12 11 10 9 8	The Electrochemistry of Graphene 2014, 79-126 Inherent characteristics of ultra-photosensitive Al/CulteO2/p-Si metal oxide semiconductor diodes. Journal of Materials Chemistry C, 2022, 10, 1445-1457 Electroanalytical overview: The detection of the molecule of murder atropine. Talanta Open, 2021, 4, 100073 Introduction and Current Applications of Screen-Printed Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology, 2016, 1-12 Application of botryosphaeran as a carbon black adherent on a glassy carbon electrode for the electrochemical determination of cyclobenzaprine. Electrochimica Acta, 2021, 379, 138176 Addressing Stakeholder Concerns Regarding the Effective Use of Bio-Based and Biodegradable	5.6 0.4 6.7	ooooo

4 Nanomaterials for Electrochemical Sensing and Biosensing **2014**, 1-45

3	Electrochemical sensing of estradiol benzoate using hydroxyapatite with three-dimensional channel frameworks. <i>Analytical Methods</i> , 2017 , 9, 5868-5872	3.2
2	Quality Control/Quality Assurance Analysis of Electrochemical Screen-Printed Sensors. <i>SpringerBriefs in Applied Sciences and Technology</i> , 2016 , 35-56	0.4
1	Incorporating Graphene into Fuel Cell Design. <i>Nanoscience and Technology</i> , 2016 , 293-312	0.6