
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2757198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles. Food Hydrocolloids, 2015, 47, 32-40.	5.6	118
2	Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Research International, 2007, 40, 763-769.	2.9	65
3	Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels. Food Chemistry, 2021, 356, 129667.	4.2	53
4	Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chemistry, 2018, 250, 98-104.	4.2	47
5	Research on migration path and structuring role of water in rice grain during soaking. Food Hydrocolloids, 2019, 92, 41-50.	5.6	47
6	Extraction of Oat (Avena sativa L.) Antifreeze Proteins and Evaluation of Their Effects on Frozen Dough and Steamed Bread. Food and Bioprocess Technology, 2015, 8, 2066-2075.	2.6	46
7	Investigation the molecular degradation, starch-lipid complexes formation and pasting properties of wheat starch in instant noodles during deep-frying treatment. Food Chemistry, 2019, 283, 287-293.	4.2	46
8	Extraction of Carrot (Daucus carota) Antifreeze Proteins and Evaluation of Their Effects on Frozen White Salted Noodles. Food and Bioprocess Technology, 2014, 7, 842-852.	2.6	45
9	<scp>l</scp> -Arabinose Inhibits Colitis by Modulating Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 13299-13306.	2.4	43
10	Production of a recombinant carrot antifreeze protein by Pichia pastoris GS115 and its cryoprotective effects on frozen dough properties and bread quality. LWT - Food Science and Technology, 2018, 96, 543-550.	2.5	41
11	Effect of cooking methods on solubility and nutrition quality of brown rice powder. Food Chemistry, 2019, 274, 444-451.	4.2	41
12	Phosphorylation and Enzymatic Hydrolysis with Alcalase and Papain Effectively Reduce Allergic Reactions to Gliadins in Normal Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 6313-6323.	2.4	41
13	Comparative analysis of the oil absorption behavior and microstructural changes of fresh and pre-frozen potato strips during frying via MRl, SEM, and XRD. Food Research International, 2019, 122, 295-302.	2.9	41
14	Extrusion followed by ultrasound as a chemical-free pretreatment method to enhance enzymatic hydrolysis of rice hull for fermentable sugars production. Industrial Crops and Products, 2020, 149, 112356.	2.5	41
15	Investigation on molecular and morphology changes of protein and starch in rice kernel during cooking. Food Chemistry, 2020, 316, 126262.	4.2	41
16	The soy protein isolate-Octacosanol-polysaccharides nanocomplex for enhanced physical stability in neutral conditions: Fabrication, characterization, thermal stability. Food Chemistry, 2020, 322, 126638.	4.2	40
17	Effect of carrot (Daucus carota) antifreeze proteins on texture properties of frozen dough and volatile compounds of crumb. LWT - Food Science and Technology, 2008, 41, 1029-1036.	2.5	38
18	Melanoidins from Coffee, Cocoa, and Bread Are Able to Scavenge α-Dicarbonyl Compounds under Simulated Physiological Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 10921-10929.	2.4	37

#	Article	lF	CITATIONS
19	Epicatechin Adducting with 5-Hydroxymethylfurfural as an Inhibitory Mechanism against Acrylamide Formation in Maillard Reactions. Journal of Agricultural and Food Chemistry, 2018, 66, 12536-12543.	2.4	34
20	Geniposide reduces cholesterol accumulation and increases its excretion by regulating the FXR-mediated liver-gut crosstalk of bile acids. Pharmacological Research, 2020, 152, 104631.	3.1	34
21	Synthesis and study the properties of StNPs/gum nanoparticles for salvianolic acid B-oral delivery system. Food Chemistry, 2017, 229, 111-119.	4.2	33
22	Effect of multistage process on the quality, water and oil distribution and microstructure of French fries. Food Research International, 2020, 137, 109229.	2.9	33
23	Understanding the molecular weight distribution, in vitro digestibility and rheological properties of the deep-fried wheat starch. Food Chemistry, 2020, 331, 127315.	4.2	33
24	Characteristics of pasting properties and morphology changes of rice starch and flour under different heating modes. International Journal of Biological Macromolecules, 2020, 149, 246-255.	3.6	33
25	Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from <i>Pichia pastoris</i> GS115 on Hydrated Gluten Proteins during Freezing. Journal of Agricultural and Food Chemistry, 2018, 66, 6151-6161.	2.4	32
26	Effect of different processing methods on physicochemical properties, chemical compositions and in vitro antioxidant activities of Paeonia lactiflora Pall seed oils. Food Chemistry, 2020, 332, 127408.	4.2	30
27	Determination of Key Active Components in Different Edible Oils Affecting Lipid Accumulation and Reactive Oxygen Species Production in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 11943-11956.	2.4	29
28	Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chemistry, 2021, 345, 128785.	4.2	29
29	Comparative analysis of the effects of novel electric field frying and conventional frying on the quality of frying oil and oil absorption of fried shrimps. Food Control, 2021, 128, 108195.	2.8	29
30	Effect of microwave heating and vacuum oven drying of potato strips on oil uptake during deep-fat frying. Food Research International, 2020, 137, 109338.	2.9	28
31	The effect of fatty acid composition on the oil absorption behavior and surface morphology of fried potato sticks via LF-NMR, MRI, and SEM. Food Chemistry: X, 2020, 7, 100095.	1.8	27
32	The characterization and stability of the soy protein isolate/1-Octacosanol nanocomplex. Food Chemistry, 2019, 297, 124766.	4.2	26
33	Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chemistry, 2019, 289, 616-624.	4.2	25
34	Applying sensory and instrumental techniques to evaluate the texture of French fries from fast food restaurant. Journal of Texture Studies, 2020, 51, 521-531.	1.1	25
35	Geniposide Improves Glucose Homeostasis via Regulating FoxO1/PDK4 in Skeletal Muscle. Journal of Agricultural and Food Chemistry, 2019, 67, 4483-4492.	2.4	23
36	Determination of Origin of Commercial Flavored Rapeseed Oil by the Pattern of Volatile Compounds Obtained via GC–MS and Flash GC Electronic Nose. European Journal of Lipid Science and Technology, 2020, 122, 1900332.	1.0	23

#	Article	IF	CITATIONS
37	Analysis of quality and microstructure of freshly potato strips fried with different oils. LWT - Food Science and Technology, 2020, 133, 110038.	2.5	23
38	Comparison of Different Soluble Dietary Fibers during the <i>In Vitro</i> Fermentation Process. Journal of Agricultural and Food Chemistry, 2021, 69, 7446-7457.	2.4	22
39	Advances in exogenous docosahexaenoic acidâ€containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1420-1448.	5.9	22
40	Effect of whole wheat flour on the quality, texture profile, and oxidation stability of instant fried noodles. Journal of Texture Studies, 2017, 48, 607-615.	1.1	21
41	Reduction of 5â€hydroxymethylfurfural formation by flavanâ€3â€ols in Maillard reaction models and fried potato chips. Journal of the Science of Food and Agriculture, 2018, 98, 5294-5301.	1.7	21
42	Insoluble dietary fibre scavenges reactive carbonyl species under simulated physiological conditions: The key role of fibre-bound polyphenols. Food Chemistry, 2021, 349, 129018.	4.2	21
43	Effect of structure evolution of starch in rice on the textural formation of cooked rice. Food Chemistry, 2021, 342, 128205.	4.2	20
44	Purification and Identification of Antifreeze Protein From Cold-Acclimated Oat (Avena sativa L.) and the Cryoprotective Activities in Ice Cream. Food and Bioprocess Technology, 2016, 9, 1746-1755.	2.6	19
45	Using RVA-full pattern fitting to develop rice viscosity fingerprints and improve type classification. Journal of Cereal Science, 2018, 81, 1-7.	1.8	17
46	Study of the migration and molecular structure of starch and protein in rice kernel during heating. International Journal of Biological Macromolecules, 2020, 147, 1116-1124.	3.6	17
47	Preparation of crocin nanocomplex in order to increase its physical stability. Food Hydrocolloids, 2021, 120, 106415.	5.6	17
48	Physicochemical properties of stable multilayer nanoemulsion prepared via the spontaneously-ordered adsorption of short and long chains. Food Chemistry, 2019, 274, 620-628.	4.2	16
49	Comparative analysis of the texture and physicochemical properties of cooked rice based on adjustable rice cooker. LWT - Food Science and Technology, 2020, 130, 109650.	2.5	16
50	Cocoa melanoidins reduce the formation of dietary advanced glycation end-products in dairy mimicking system. Food Chemistry, 2021, 345, 128827.	4.2	15
51	Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis. Journal of Agricultural and Food Chemistry, 2018, 66, 5802-5811.	2.4	14
52	Effect of the phenolic extract of Camellia oleifera seed cake on the oxidation process of soybean oil by 1H nuclear magnetic resonance during frying. LWT - Food Science and Technology, 2021, 150, 111900.	2.5	14
53	Pectins of different resources influences cold storage properties of corn starch gels: Structure-property relationships. Food Hydrocolloids, 2022, 124, 107287.	5.6	13
54	In vitro digestibility and quality attributes of white salted noodles supplemented with pullulanase-treated flour. International Journal of Biological Macromolecules, 2019, 123, 1157-1164.	3.6	12

#	Article	IF	CITATIONS
55	Characterization of promising natural blue pigment from Vaccinium bracteatum thunb. leaves: Insights of the stability and the inhibition of α-amylase. Food Chemistry, 2020, 326, 126962.	4.2	12
56	Trapping of reactive carbonyl species by fiber-bound polyphenols from whole grains under simulated physiological conditions. Food Research International, 2022, 156, 111142.	2.9	11
57	Virgin Grape Seed Oil Alleviates Insulin Resistance and Energy Metabolism Disorder in Mice Fed a Highâ€Fat Diet. European Journal of Lipid Science and Technology, 2020, 122, 1900158.	1.0	8
58	Characterization of Thermally Induced Flavor Compounds from the Glucosinolate Progoitrin in Different Matrices via GC-TOF-MS. Journal of Agricultural and Food Chemistry, 2022, 70, 1232-1240.	2.4	7
59	Determination of characteristic evaluation indexes for novel cookies prepared with wax oleogels. Journal of the Science of Food and Agriculture, 2022, 102, 5544-5553.	1.7	7
60	Influence of spatial structure on properties of rice kernel as compared with its flour and starch in limited water. LWT - Food Science and Technology, 2019, 110, 85-93.	2.5	6
61	Effects of cereal fibers on short-chain fatty acids in healthy subjects and patients: a meta-analysis of randomized clinical trials. Food and Function, 2021, 12, 7040-7053.	2.1	6
62	Effect of moderate electric field on the quality, microstructure and oil absorption behavior of potato strips during deep-fat frying. Journal of Food Engineering, 2022, 313, 110751.	2.7	6
63	Feruloylated arabinoxylan from wheat bran inhibited M1-macrophage activation and enhanced M2-macrophage polarization. International Journal of Biological Macromolecules, 2022, 194, 993-1001.	3.6	5
64	Preparation, structure and stability of protein-pterostilbene nanocomplexes coated by soybean polysaccharide and maltodextrin. Food Bioscience, 2022, 49, 101899.	2.0	4
65	Insight into the effect of fatty acid composition on the texture of French fries. Journal of the Science of Food and Agriculture, 2021, , .	1.7	3
66	Enzymatic preparation of lysophosphatidylserine containing DHA from sn-glycero-3-phosphatidylserine and DHA in a solvent-free system. LWT - Food Science and Technology, 2022, 154, 112635.	2.5	3