List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2757105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D2/D3 receptors. European Journal of Medicinal Chemistry, 2013, 60, 42-50.	2.6	81
2	Novel 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>]quinoline Based 5-HT ₆ Receptor Antagonists with Potential Application for the Treatment of Cognitive Disorders Associated with Alzheimer's Disease. ACS Chemical Neuroscience, 2016, 7, 972-983.	1.7	64
3	Quinoline- and isoquinoline-sulfonamide derivatives of LCAP as potent CNS multi-receptor—5-HT1A/5-HT2A/5-HT7 and D2/D3/D4—agents: The synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2012, 20, 1545-1556.	1.4	59
4	Synthesis and Evaluation of Antidepressantâ€like Activity of Some 4â€6ubstituted 1â€(2â€methoxyphenyl)Piperazine Derivatives. Chemical Biology and Drug Design, 2015, 85, 326-335.	1.5	50
5	Novel multi-target azinesulfonamides of cyclic amine derivatives as potential antipsychotics with pro-social and pro-cognitive effects. European Journal of Medicinal Chemistry, 2018, 145, 790-804.	2.6	43
6	The 1,3,5-Triazine Derivatives as Innovative Chemical Family of 5-HT6 Serotonin Receptor Agents with Therapeutic Perspectives for Cognitive Impairment. International Journal of Molecular Sciences, 2019, 20, 3420.	1.8	43
7	N1-Azinylsulfonyl-1H-indoles: 5-HT6 Receptor Antagonists with Procognitive and Antidepressant-Like Properties. ACS Medicinal Chemistry Letters, 2016, 7, 618-622.	1.3	42
8	In the search for a lead structure among series of potent and selective hydantoin 5â€ <scp>HT</scp> ₇ R agents: The drugâ€likeness in vitro study. Chemical Biology and Drug Design, 2017, 90, 1295-1306.	1.5	41
9	Novel non-sulfonamide 5-HT 6 receptor partial inverse agonist in a group of imidazo[4,5- b]pyridines with cognition enhancing properties. European Journal of Medicinal Chemistry, 2018, 144, 716-729.	2.6	37
10	SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives. European Journal of Medicinal Chemistry, 2014, 78, 324-339.	2.6	36
11	The multiobjective based design, synthesis and evaluation of the arylsulfonamide/amide derivatives of aryloxyethyl- and arylthioethyl- piperidines and pyrrolidines as a novel class of potent 5-HT7 receptor antagonists. European Journal of Medicinal Chemistry, 2012, 56, 348-360.	2.6	35
12	Synthesis and evaluation of pharmacological properties of some new xanthone derivatives with piperazine moiety. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4419-4423.	1.0	35
13	Arene- and quinoline-sulfonamides as novel 5-HT7 receptor ligands. Bioorganic and Medicinal Chemistry, 2011, 19, 6750-6759.	1.4	33
14	Synthesis and biological evaluation of novel pyrrolidine-2,5-dione derivatives asÂpotential antidepressant agents. Part 1. European Journal of Medicinal Chemistry, 2013, 63, 484-500.	2.6	33
15	The computer-aided discovery of novel family of the 5-HT6 serotonin receptor ligands among derivatives of 4-benzyl-1,3,5-triazine. European Journal of Medicinal Chemistry, 2017, 135, 117-124.	2.6	33
16	Antidepressant- and anxiolytic-like activity of 7-phenylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 5-HT1A receptor functional profile. Bioorganic and Medicinal Chemistry, 2015, 23, 212-221.	1.4	31
17	Concentration-Dependent Dual Mode of Zn Action at Serotonin 5-HT1A Receptors: In Vitro and In Vivo Studies. Molecular Neurobiology, 2016, 53, 6869-6881.	1.9	30
18	Towards new 5-HT 7 antagonists among arylsulfonamide derivatives of (aryloxy)ethyl-alkyl amines: Multiobjective based design, synthesis, and antidepressant and anxiolytic properties. European Journal of Medicinal Chemistry, 2016, 108, 334-346.	2.6	28

#	Article	IF	CITATIONS
19	Amino Acid Hot Spots of Halogen Bonding: A Combined Theoretical and Experimental Case Study of the 5-HT ₇ Receptor. Journal of Medicinal Chemistry, 2018, 61, 8717-8733.	2.9	28
20	Structure–activity relationships and molecular studies of novel arylpiperazinylalkyl purine-2,4-diones and purine-2,4,8-triones with antidepressant and anxiolytic-like activity. European Journal of Medicinal Chemistry, 2015, 97, 142-154.	2.6	27
21	Virtual screening-driven discovery of dual 5-HT6/5-HT2A receptor ligands with pro-cognitive properties. European Journal of Medicinal Chemistry, 2020, 185, 111857.	2.6	26
22	The impact of the halogen bonding on D 2 and 5-HT 1A /5-HT 7 receptor activity of azinesulfonamides of 4-[(2-ethyl)piperidinyl-1-yl]phenylpiperazines with antipsychotic and antidepressant properties. Bioorganic and Medicinal Chemistry, 2017, 25, 3638-3648.	1.4	24
23	Novel naphthyloxy derivatives – Potent histamine H3 receptor ligands. Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2018, 26, 2573-2585.	1.4	24
24	Dual 5-HT ₆ and D ₃ Receptor Antagonists in a Group of 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>]quinolines with Neuroprotective and Procognitive Activity. ACS Chemical Neuroscience, 2019, 10, 3183-3196.	1.7	24
25	Solid-supported synthesis, molecular modeling, and biological activity of long-chain arylpiperazine derivatives with cyclic amino acid amide fragments as 5-HT7 and 5-HT1A receptor ligands. European Journal of Medicinal Chemistry, 2014, 78, 10-22.	2.6	23
26	From Homology Models to a Set of Predictive Binding Pockets–a 5-HT _{1A} Receptor Case Study. Journal of Chemical Information and Modeling, 2017, 57, 311-321.	2.5	23
27	Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT7 receptor low-basicity agonists, potential neuropathic painkillers. European Journal of Medicinal Chemistry, 2019, 170, 261-275.	2.6	22
28	Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonists. Molecular modeling, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2016, 112, 258-269.	2.6	21
29	Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect. European Journal of Medicinal Chemistry, 2019, 183, 111736.	2.6	21
30	Acute and repeated treatment with the 5-HT7 receptor antagonist SB 269970 induces functional desensitization of 5-HT7 receptors in rat hippocampus. Pharmacological Reports, 2012, 64, 256-265.	1.5	20
31	2-Aminoimidazole-based antagonists of the 5-HT6 receptor – A new concept in aminergic GPCR ligand design. European Journal of Medicinal Chemistry, 2019, 179, 1-15.	2.6	20
32	Novel anilide and benzylamide derivatives of arylpiperazinylalkanoic acids as 5-HT1A/5-HT7 receptor antagonists and phosphodiesterase 4/7 inhibitors with procognitive and antidepressant activity. European Journal of Medicinal Chemistry, 2020, 201, 112437.	2.6	19
33	Novel 5-HT 7 R antagonists, arylsulfonamide derivatives of (aryloxy)propyl piperidines: Add-on effect to the antidepressant activity of SSRI and DRI, and pro-cognitive profile. Bioorganic and Medicinal Chemistry, 2017, 25, 2789-2799.	1.4	18
34	Low-basicity 5-HT7 Receptor Agonists Synthesized Using the van Leusen Multicomponent Protocol. Scientific Reports, 2017, 7, 1444.	1.6	18
35	Computer-Aided Studies for Novel Arylhydantoin 1,3,5-Triazine Derivatives as 5-HT6 Serotonin Receptor Ligands with Antidepressive-Like, Anxiolytic and Antiobesity Action In Vivo. Molecules, 2018, 23, 2529.	1.7	18
36	Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT6. European Journal of Medicinal Chemistry, 2019, 178, 740-751.	2.6	18

#	Article	IF	CITATIONS
37	Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action. Pharmacology Biochemistry and Behavior, 2016, 141, 28-41.	1.3	17
38	Towards novel 5-HT7 versus 5-HT1A receptor ligands among LCAPs with cyclic amino acid amide fragments: Design, synthesis, and antidepressant properties. Part II. European Journal of Medicinal Chemistry, 2015, 92, 202-211.	2.6	16
39	Fingerprint-based consensus virtual screening towards structurally new 5-HT6R ligands. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1827-1830.	1.0	16
40	Novel 4-aryl-pyrido[1,2-c]pyrimidines with dual SSRI and 5-HT1A activity. Part 5. European Journal of Medicinal Chemistry, 2015, 98, 221-236.	2.6	16
41	N-Alkylated arylsulfonamides of (aryloxy)ethyl piperidines: 5-HT7 receptor selectivity versus multireceptor profile. Bioorganic and Medicinal Chemistry, 2016, 24, 130-139.	1.4	16
42	Computer-aided insights into receptor-ligand interaction for novel 5-arylhydantoin derivatives as serotonin 5-HT 7 receptor agents with antidepressant activity. European Journal of Medicinal Chemistry, 2018, 147, 102-114.	2.6	16
43	Tuning the activity of known drugs via the introduction of halogen atoms, a case study of SERT ligands – Fluoxetine and fluvoxamine. European Journal of Medicinal Chemistry, 2021, 220, 113533.	2.6	16
44	New 8-aminoalkyl derivatives of purine-2,6-dione with arylalkyl, allyl or propynyl substituents in position 7, their 5-HT1A, 5-HT2A, and 5-HT7 receptor affinity and pharmacological evaluation. Pharmacological Reports, 2013, 65, 15-29.	1.5	15
45	Rational Design, Pharmacomodulation, and Synthesis of Dual 5-Hydroxytryptamine 7 (5-HT ₇)/5-Hydroxytryptamine 2A (5-HT _{2A}) Receptor Antagonists and Evaluation by [¹⁸ F]-PET Imaging in a Primate Brain. Journal of Medicinal Chemistry, 2015, 58, 8066-8096.	2.9	15
46	Pyrroloquinoline scaffold-based 5-HT6R ligands: Synthesis, quantum chemical and molecular dynamic studies, and influence of nitrogen atom position in the scaffold on affinity. Bioorganic and Medicinal Chemistry, 2018, 26, 3588-3595.	1.4	15
47	A dual-acting 5-HT6 receptor inverse agonist/MAO-B inhibitor displays glioprotective and pro-cognitive properties. European Journal of Medicinal Chemistry, 2020, 208, 112765.	2.6	15
48	Towards metabolically stable 5-HT7 receptor ligands: a study on 1-arylpiperazine derivatives and related isosters. Experimental Brain Research, 2013, 230, 569-582.	0.7	14
49	New 1-arylindoles based serotonin 5-HT7 antagonists. Synthesis andÂbinding evaluation studies. European Journal of Medicinal Chemistry, 2014, 75, 159-168.	2.6	14
50	Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve inÂvitro microsomal stability: A case study. European Journal of Medicinal Chemistry, 2016, 120, 363-379.	2.6	14
51	Chlorine substituents and linker topology as factors of 5-HT6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties inÂvivo. European Journal of Medicinal Chemistry, 2020, 203, 112529.	2.6	14
52	lmidazopyridine-Based 5-HT ₆ Receptor Neutral Antagonists: Impact of <i>N</i> ¹ -Benzyl and <i>N</i> ¹ -Phenylsulfonyl Fragments on Different Receptor Conformational States. Journal of Medicinal Chemistry, 2021, 64, 1180-1196.	2.9	14
53	Structure-Based Design and Optimization of FPPQ, a Dual-Acting 5-HT ₃ and 5-HT ₆ Receptor Antagonist with Antipsychotic and Procognitive Properties. Journal of Medicinal Chemistry, 2021, 64, 13279-13298.	2.9	14
54	Arylsulfonamide derivatives of (aryloxy)ethylpiperidines as selective 5-HT ₇ receptor antagonists and their psychotropic properties. MedChemComm, 2015, 6, 1272-1277.	3.5	13

#	Article	IF	CITATIONS
55	Allosteric Inhibition of Serotonin 5-HT7 Receptors by Zinc Ions. Molecular Neurobiology, 2018, 55, 2897-2910.	1.9	13
56	Synthesis and computer-aided analysis of the role of linker for novel ligands of the 5-HT6 serotonin receptor among substituted 1,3,5-triazinylpiperazines. Bioorganic Chemistry, 2019, 84, 319-325.	2.0	13
57	Design, synthesis and molecular modelling of new bulky Fananserin derivatives with altered pharmacological profile as potential antidepressants. Bioorganic and Medicinal Chemistry, 2019, 27, 3396-3407.	1.4	12
58	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	2.6	12
59	Synthesis, anticonvulsant activity and 5-HT1A/5-HT7 receptors affinity of 1-[(4-arylpiperazin-1-yl)-propyl]-succinimides. Pharmacological Reports, 2012, 64, 326-335.	1.5	11
60	The effect of the intramolecular C–Hâ∢O interactions on the conformational preferences of bis-arylsulfones – 5-HT ₆ receptor antagonists and beyond. RSC Advances, 2018, 8, 18672-18681.	1.7	11
61	Spiro[pyrrolidine-3,3′-oxindoles] as 5-HT 7 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2418-2421.	1.0	11
62	The Phenoxyalkyltriazine Antagonists for 5-HT6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. International Journal of Molecular Sciences, 2021, 22, 10773.	1.8	11
63	New 7-arylpiperazinylalkyl-8-morpholin-4-yl-purine-2,6-dione derivatives with anxiolytic activity – Synthesis, crystal structure and structure–activity study. Journal of Molecular Structure, 2014, 1067, 243-251.	1.8	10
64	Rational design of 5-HT6R ligands using a bioisosteric strategy: synthesis, biological evaluation and molecular modelling. RSC Advances, 2015, 5, 25806-25815.	1.7	10
65	Arylpiperazinylalkyl derivatives of 8-amino-1,3-dimethylpurine-2,6-dione as novel multitarget 5-HT/D receptor agents with potential antipsychotic activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1048-1062.	2.5	10
66	New dual ligands for the D2 and 5-HT1A receptors from the group of 1,8-naphthyl derivatives of LCAP. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2236-2242.	1.0	10
67	Chemical puzzles in the search for new, flexible derivatives of lurasidone as antipsychotic drugs. Bioorganic and Medicinal Chemistry, 2020, 28, 115459.	1.4	9
68	2-Phenyl-1 <i>H</i> -pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT ₆ Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chemical Neuroscience, 2021, 12, 1228-1240.	1.7	9
69	Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer's Disease. Current Medicinal Chemistry, 2021, 28, 1731-1745.	1.2	9
70	Pyrano[2,3,4- <i>cd</i>]indole as a Scaffold for Selective Nonbasic 5-HT ₆ R Ligands. ACS Medicinal Chemistry Letters, 2017, 8, 390-394.	1.3	8
71	Structural determinants influencing halogen bonding: a case study on azinesulfonamide analogs of aripiprazole as 5-HT1A, 5-HT7, and D2 receptor ligands. Chemistry Central Journal, 2018, 12, 55.	2.6	8
72	Identification of a Potent and Selective 5-HT _{1A} Receptor Agonist with <i>In Vitro</i> and <i>In Vivo</i> Antinociceptive Activity. ACS Chemical Neuroscience, 2020, 11, 4111-4127.	1.7	8

#	Article	IF	CITATIONS
73	Synthesis, crystal structure and biological activity of novel analogues of tricyclic drugs. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127493.	1.0	8
74	Design, Sustainable Synthesis and Biological Evaluation of a Novel Dual α2A/5-HT7 Receptor Antagonist with Antidepressant-Like Properties. Molecules, 2021, 26, 3828.	1.7	8
75	An exit beyond the pharmacophore model for 5-HT6R agents - a new strategy to gain dual 5-HT6/5-HT2A action for triazine derivatives with procognitive potential. Bioorganic Chemistry, 2022, 121, 105695.	2.0	8
76	Overcoming undesirable hERG affinity by incorporating fluorine atoms: A case of MAO-B inhibitors derived from 1ÂH-pyrrolo-[3,2-c]quinolines. European Journal of Medicinal Chemistry, 2022, 236, 114329.	2.6	8
77	Solidâ€Supported Synthesis and 5â€ <scp>HT</scp> ₇ /5â€ <scp>HT</scp> _{1A} Receptor Affinity of Arylpiperazinylbutyl Derivatives of 4,5â€dihydroâ€1,2,4â€triazineâ€6â€(1 <i>H</i>)â€one. Chemical Bic and Drug Design, 2015, 86, 697-703.	olagy	7
78	Structural insights into serotonin receptor ligands polypharmacology. European Journal of Medicinal Chemistry, 2018, 151, 797-814.	2.6	7
79	The role of aryl-topology in balancing between selective and dual 5-HT ₇ R/5-HT _{1A} actions of 3,5-substituted hydantoins. MedChemComm, 2018, 9, 1033-1044.	3.5	7
80	Aminotriazines with indole motif as novel, 5-HT7 receptor ligands with atypical binding mode. Bioorganic Chemistry, 2020, 104, 104254.	2.0	7
81	Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Current Medicinal Chemistry, 2019, 26, 4885-4913.	1.2	7
82	New Arylpiperazinylalkyl Derivatives of 8â€Alkoxyâ€purineâ€2,6â€dione and Dihydro[1,3]oxazolo[2,3â€ <i>f</i>]purinedione Targeting the Serotonin 5â€HT _{1A} /5â€HT _{2A} /5â€HT ₇ and Dopamine D ₂ Receptors. Arc Der Pharmazie. 2015. 348. 242-253	hīv ¹	6
83	 <i>N</i>-(4-Arylpiperazinoalkyl)acetamide derivatives of 1,3- and 3,7-dimethyl-1<i>H</i>-purine-2,6(3<i>H</i>,7<i>H</i>)-diones and their 5-HT₆, 5-HT₇, and D₂ receptors affinity. Heterocyclic Communications, 2015, 21, 13-18. 	0.6	6
84	Halogen bonding enhances activity in a series of dual 5-HT ₆ /D ₂ ligands designed in a hybrid bioisostere generation/virtual screening protocol. RSC Advances, 2016, 6, 54918-54925.	1.7	6
85	Design, synthesis and biological evaluation of novel serotonin and dopamine receptor ligands being 6-bromohexyl saccharine derivatives. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126667.	1.0	6
86	Design and synthesis of new potent 5-HT7 receptor ligands as a candidate for the treatment of central nervous system diseases. European Journal of Medicinal Chemistry, 2022, 227, 113931.	2.6	6
87	Synthesis and Structure-Activity Relationship Analysis of 5-HT7 Receptor Antagonists: Piperazin-1-yl Substituted Unfused Heterobiaryls. Molecules, 2016, 21, 433.	1.7	5
88	The Effect of Carboxamide/Sulfonamide Replacement in Arylpiperazinylalkyl Derivatives on Activity to Serotonin and Dopamine Receptors. Archiv Der Pharmazie, 2017, 350, 1700090.	2.1	5
89	New N-aryl-N′-aryl-/(thio)ureido-/sulfamoylamino-derivatives of alkyl/alkylcarbamoyl piperazines: Effect of structural modifications on selectivity over 5-HT1A receptor. European Journal of Medicinal Chemistry, 2022, 235, 114319.	2.6	5
90	Quinolinesulfonamides of Aryloxyâ€/Arylthioâ€ethyl Piperidines: Influence of an Arylether Fragment on 5â€HT _{1A} /5â€HT ₇ Receptor Selectivity. Archiv Der Pharmazie, 2013, 346, 180-188.	2.1	4

#	Article	IF	CITATIONS
91	Design, Synthesis and Biological Evaluation of Potent Antioxidant 1â€{2,5â€Dimethoxybenzyl)â€4â€arylpiperazines and <i>N</i> â€Azolyl Substituted 2â€{4â€Arylpiperazinâ€1â€y ChemistrySelect, 2017, 2, 3854-3859.	yl)0.7	4
92	Neuropathic pain-alleviating activity of novel 5-HT6 receptor inverse agonists derived from 2-aryl-1H-pyrrole-3-carboxamide. Bioorganic Chemistry, 2021, 115, 105218.	2.0	4
93	The Structural Determinants for α1-Adrenergic/Serotonin Receptors Activity among Phenylpiperazine-Hydantoin Derivatives. Molecules, 2021, 26, 7025.	1.7	4
94	N-Skatyltryptamines—Dual 5-HT6R/D2R Ligands with Antipsychotic and Procognitive Potential. Molecules, 2021, 26, 4605.	1.7	3
95	Solid-Phase Synthesis of Arylpiperazine Derivatives and Implementation of the Distributed Drug Discovery (D3) Project in the Search for CNS Agents. Molecules, 2011, 16, 4104-4121.	1.7	2
96	Synthesis of Some Aminophosphonates Bearing <i>N</i> â€(Fluorophenyl)â€piperazynyl Moiety and Their Activity toward Serotonin Receptors. Heteroatom Chemistry, 2015, 26, 290-298.	0.4	2
97	Structure–5â€HT/D ₂ Receptor Affinity Relationship in a New Group of 1â€Arylpiperazynylalkyl Derivatives of 8â€Dialkylaminoâ€3,7â€dimethylâ€1 <i>H</i> â€purineâ€2,6(3 <i>H</i> ,7 <i>H</i>)â€dione. Archiv Pharmazie, 2016, 349, 774-784.	Der.1	2
98	Rationally designed N-phenylsulfonylindoles as a tool for the analysis of the non-basic 5-HT6R ligands binding mode. European Journal of Medicinal Chemistry, 2021, 209, 112916.	2.6	2
99	Radioligand and computational insight in structure – Activity relationship of saccharin derivatives being ipsapirone and revospirone analogues. Bioorganic and Medicinal Chemistry Letters, 2021, 42, 128028.	1.0	2
100	A new class of 5-HT1A receptor antagonists with procognitive and antidepressant properties. Future Medicinal Chemistry, 2021, 13, 1497-1514.	1.1	2
101	Design and Synthesis of Novel Aminoalkanamides Targeting Neurodegeneration and Symptoms of Alzheimer's Disease. Current Medicinal Chemistry, 2021, 28, 6082-6094.	1.2	2
102	The relationship between stereochemical and both, pharmacological and ADME-Tox, properties of the potent hydantoin 5-HT7R antagonist MF-8. Bioorganic Chemistry, 2021, 106, 104466.	2.0	1
103	Antidepressants Differentially Regulate Intracellular Signaling from α1-Adrenergic Receptor Subtypes In Vitro. International Journal of Molecular Sciences, 2021, 22, 4817.	1.8	0