
## GlÃ<sup>3</sup>ria FernÃ;ndez-Lorente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2756956/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and<br>Microbial Technology, 2007, 40, 1451-1463.                                                                                            | 3.2 | 2,864     |
| 2  | Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 1998, 93, 185-197.                                                                                                               | 3.2 | 441       |
| 3  | Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization,<br>hyperactivation and stabilization of the open form of lipases. Journal of Molecular Catalysis B:<br>Enzymatic, 2002, 19-20, 279-286. | 1.8 | 384       |
| 4  | Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 2006, 39, 274-280.                                                                            | 3.2 | 347       |
| 5  | Multifunctional Epoxy Supports:Â A New Tool To Improve the Covalent Immobilization of Proteins. The<br>Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage.<br>Biomacromolecules, 2000, 1, 739-745.  | 5.4 | 281       |
| 6  | Epoxy Sepabeads: A Novel Epoxy Support for Stabilization of Industrial Enzymes via Very Intense<br>Multipoint Covalent Attachment. Biotechnology Progress, 2002, 18, 629-634.                                                                | 2.6 | 259       |
| 7  | Some special features of glyoxyl supports to immobilize proteins. Enzyme and Microbial Technology, 2005, 37, 456-462.                                                                                                                        | 3.2 | 257       |
| 8  | Epoxy-Amino Groups:Â A New Tool for Improved Immobilization of Proteins by the Epoxy Method.<br>Biomacromolecules, 2003, 4, 772-777.                                                                                                         | 5.4 | 234       |
| 9  | General Trend of Lipase to Self-Assemble Giving Bimolecular Aggregates Greatly Modifies the Enzyme<br>Functionality. Biomacromolecules, 2003, 4, 1-6.                                                                                        | 5.4 | 212       |
| 10 | Activation of Bacterial Thermoalkalophilic Lipases Is Spurred by Dramatic Structural Rearrangements.<br>Journal of Biological Chemistry, 2009, 284, 4365-4372.                                                                               | 3.4 | 196       |
| 11 | Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry, 2008, 43, 1061-1067.                                                                        | 3.7 | 191       |
| 12 | Modulation of the enantioselectivity of lipases via controlled immobilization and medium<br>engineering: hydrolytic resolution of mandelic acid esters. Enzyme and Microbial Technology, 2002, 31,<br>775-783.                               | 3.2 | 160       |
| 13 | Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 171-176.                                         | 1.8 | 159       |
| 14 | Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering.<br>Kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron: Asymmetry, 2002, 13,<br>1337-1345.                    | 1.8 | 124       |
| 15 | Use of immobilized lipases for lipase purification via specific lipase–lipase interactions. Journal of<br>Chromatography A, 2004, 1038, 267-273.                                                                                             | 3.7 | 121       |
| 16 | Glutaraldehyde Cross-Linking of Lipases Adsorbed on Aminated Supports in the Presence of Detergents<br>Leads to Improved Performance. Biomacromolecules, 2006, 7, 2610-2615.                                                                 | 5.4 | 121       |
| 17 | Self-assembly ofPseudomonas fluorescenslipase into bimolecular aggregates dramatically affects functional properties. Biotechnology and Bioengineering, 2003, 82, 232-237.                                                                   | 3.3 | 119       |
| 18 | CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 2006, 39, 750-755.                                                                        | 3.2 | 114       |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme and Microbial Technology, 2005, 36, 447-454.                                                                                           | 3.2 | 110       |
| 20 | Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzyme and Microbial Technology, 2007, 41, 565-569.                                               | 3.2 | 109       |
| 21 | One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 2001, 76, 269-276.                       | 3.3 | 103       |
| 22 | Solid-Phase Chemical Amination of a Lipase from Bacillus thermocatenulatus To Improve Its<br>Stabilization via Covalent Immobilization on Highly Activated Glyoxyl-Agarose. Biomacromolecules,<br>2008, 9, 2553-2561.                    | 5.4 | 98        |
| 23 | Solid-Phase Handling of Hydrophobins:Â Immobilized Hydrophobins as a New Tool To Study Lipases.<br>Biomacromolecules, 2003, 4, 204-210.                                                                                                  | 5.4 | 96        |
| 24 | Cross-Linked Aggregates of Multimeric Enzymes:Â A Simple and Efficient Methodology To Stabilize Their<br>Quaternary Structure. Biomacromolecules, 2004, 5, 814-817.                                                                      | 5.4 | 95        |
| 25 | Modulation of lipase properties in macro-aqueous systems by controlled enzyme immobilization:<br>enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme and Microbial<br>Technology, 2001, 28, 389-396. | 3.2 | 94        |
| 26 | Improvement of Enzyme Properties with a Two-Step Immobilizaton Process on Novel Heterofunctional<br>Supports. Biomacromolecules, 2010, 11, 3112-3117.                                                                                    | 5.4 | 93        |
| 27 | Modulation of Mucor miehei lipase properties via directed immobilization on different<br>hetero-functional epoxy resins. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 201-210.                                                 | 1.8 | 88        |
| 28 | Preparation of a Stable Biocatalyst of Bovine Liver Catalase Using Immobilization and Postimmobilization Techniques. Biotechnology Progress, 2003, 19, 763-767.                                                                          | 2.6 | 87        |
| 29 | Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnology and Bioengineering, 2007, 97, 242-250.                                               | 3.3 | 81        |
| 30 | Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via<br>RSM. Catalysts, 2020, 10, 414.                                                                                                     | 3.5 | 79        |
| 31 | A Novel Heterofunctional Epoxy-Amino Sepabeads for a New Enzyme Immobilization Protocol:<br>Immobilization-Stabilization of β-Galactosidase from Aspergillus oryzae. Biotechnology Progress, 2003,<br>19, 1056-1060.                     | 2.6 | 77        |
| 32 | Biotransformations Catalyzed by Multimeric Enzymes:Â Stabilization of Tetrameric Ampicillin Acylase<br>Permits the Optimization of Ampicillin Synthesis under Dissociation Conditions. Biomacromolecules,<br>2001, 2, 95-104.            | 5.4 | 76        |
| 33 | Affinity chromatography of polyhistidine tagged enzymes. Journal of Chromatography A, 2001, 915,<br>97-106.                                                                                                                              | 3.7 | 75        |
| 34 | Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme and Microbial Technology, 2006, 38, 975-980.                                                | 3.2 | 75        |
| 35 | A Novel Halophilic Lipase, LipBL, Showing High Efficiency in the Production of Eicosapentaenoic Acid<br>(EPA). PLoS ONE, 2011, 6, e23325.                                                                                                | 2.5 | 75        |
| 36 | Preparation of a robust biocatalyst of d-amino acid oxidase on sepabeads supports using the glutaraldehyde crosslinking method. Enzyme and Microbial Technology, 2005, 37, 750-756.                                                      | 3.2 | 69        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Purification, Immobilization, and Stabilization of a Lipase from Bacillus thermocatenulatus by<br>Interfacial Adsorption on Hydrophobic Supports. Biotechnology Progress, 2008, 20, 630-635.                                                  | 2.6 | 68        |
| 38 | Modulation of Immobilized Lipase Enantioselectivityvia Chemical Amination. Advanced Synthesis and Catalysis, 2007, 349, 1119-1127.                                                                                                            | 4.3 | 66        |
| 39 | Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp Enzyme and Microbial Technology, 2006, 39, 259-264.                                                                           | 3.2 | 64        |
| 40 | Use of Physicochemical Tools to Determine the Choice of Optimal Enzyme: Stabilization of -Amino Acid<br>Oxidase. Biotechnology Progress, 2003, 19, 784-788.                                                                                   | 2.6 | 63        |
| 41 | Preparation of new lipases derivatives with high activity–stability in anhydrous media: adsorption on<br>hydrophobic supports plus hydrophilization with polyethylenimine. Journal of Molecular Catalysis B:<br>Enzymatic, 2001, 11, 817-824. | 1.8 | 61        |
| 42 | Regio-selective deprotection of peracetylated sugars via lipase hydrolysis. Tetrahedron, 2003, 59, 5705-5711.                                                                                                                                 | 1.9 | 61        |
| 43 | Stabilization of enzymes (d-amino acid oxidase) against hydrogen peroxide via immobilization and post-immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 173-179.                                               | 1.8 | 58        |
| 44 | Influence of different immobilization techniques for Candida cylindracea lipase on its stability and<br>fish oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2012, 78, 111-118.                                                  | 1.8 | 56        |
| 45 | Glutaraldehyde modification of lipases adsorbed on aminated supports: A simple way to improve their behaviour as enantioselective biocatalyst. Enzyme and Microbial Technology, 2007, 40, 704-707.                                            | 3.2 | 55        |
| 46 | Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process<br>Biochemistry, 2009, 44, 226-231.                                                                                                             | 3.7 | 51        |
| 47 | Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized<br>lipases in aqueous medium. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 649-656.                                          | 1.8 | 49        |
| 48 | Purification of different lipases fromAspergillus niger by using a highly selective adsorption on hydrophobic supports. Biotechnology and Bioengineering, 2005, 92, 773-779.                                                                  | 3.3 | 48        |
| 49 | Crossâ€Linking of Lipases Adsorbed on Hydrophobic Supports: Highly Selective Hydrolysis of Fish Oil<br>Catalyzed by RML. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 801-807.                                             | 1.9 | 46        |
| 50 | Enzymatic resolution of (±)-glycidyl butyrate in aqueous media. Strong modulation of the properties<br>of the lipase from Rhizopus oryzae via immobilization techniques. Tetrahedron: Asymmetry, 2004, 15,<br>1157-1161.                      | 1.8 | 43        |
| 51 | Lecitase® ultra as regioselective biocatalyst in the hydrolysis of fully protected carbohydrates.<br>Journal of Molecular Catalysis B: Enzymatic, 2008, 51, 110-117.                                                                          | 1.8 | 43        |
| 52 | Modulation of the activity and selectivity of the immobilized lipases by surfactants and solvents.<br>Biochemical Engineering Journal, 2015, 93, 274-280.                                                                                     | 3.6 | 43        |
| 53 | Enzymatic production of (3S,4R)-(â^')-4-(4′-fluorophenyl)-6-oxo-piperidin-3-carboxylic acid using a<br>commercial preparation from Candida antarctica A: the role of a contaminant esterase. Tetrahedron:<br>Asymmetry, 2002, 13, 2653-2659.  | 1.8 | 42        |
| 54 | Effect of the immobilization protocol in the activity, stability, and enantioslectivity of Lecitase®<br>Ultra. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 99-104.                                                                 | 1.8 | 42        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enzymatic resolution of (±)-trans-4-(4′-fluorophenyl)-6-oxo-piperidin-3-ethyl carboxylate, an<br>intermediate in the synthesis of (â^')-Paroxetine. Tetrahedron: Asymmetry, 2002, 13, 2375-2381.                                                                             | 1.8 | 41        |
| 56 | Immobilization of Yarrowia lipolytica Lipase—a Comparison of Stability of Physical Adsorption and<br>Covalent Attachment Techniques. Applied Biochemistry and Biotechnology, 2008, 146, 49-56.                                                                               | 2.9 | 41        |
| 57 | Enhanced activity of an immobilized lipase promoted by site-directed chemical modification with polymers. Process Biochemistry, 2010, 45, 534-541.                                                                                                                           | 3.7 | 41        |
| 58 | Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. BMC Biotechnology, 2017, 17, 88.                                                                                      | 3.3 | 41        |
| 59 | Production of FAME and FAEE via Alcoholysis of Sunflower Oil by Eversa Lipases Immobilized on<br>Hydrophobic Supports. Applied Biochemistry and Biotechnology, 2018, 185, 705-716.                                                                                           | 2.9 | 41        |
| 60 | â€~Interfacial affinity chromatography' of lipases: separation of different fractions by selective<br>adsorption on supports activated with hydrophobic groups. BBA - Proteins and Proteomics, 1998, 1388,<br>337-348.                                                       | 2.1 | 40        |
| 61 | Release of Omegaâ€3 Fatty Acids by the Hydrolysis of Fish Oil Catalyzed by Lipases Immobilized on<br>Hydrophobic Supports. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1173-1178.                                                                        | 1.9 | 39        |
| 62 | Evaluation of the lipase from Bacillus thermocatenulatus as an enantioselective biocatalyst.<br>Tetrahedron: Asymmetry, 2003, 14, 3679-3687.                                                                                                                                 | 1.8 | 38        |
| 63 | Regioselective enzymatic hydrolysis of acetylated pyranoses and pyranosides using immobilised lipases.<br>An easy chemoenzymatic synthesis of α- and β-d-glucopyranose acetates bearing a free secondary C-4<br>hydroxyl group. Carbohydrate Research, 2002, 337, 1615-1621. | 2.3 | 36        |
| 64 | Improving the Industrial Production of 6-APA: Enzymatic Hydrolysis of Penicillin G in the Presence of Organic Solvents. Biotechnology Progress, 2003, 19, 1639-1642.                                                                                                         | 2.6 | 36        |
| 65 | Purification and identification of different lipases contained in PPL commercial extracts: A minor contaminant is the main responsible of most esterasic activity. Enzyme and Microbial Technology, 2006, 39, 817-823.                                                       | 3.2 | 36        |
| 66 | Stabilization of Enzymes by Multipoint Covalent Immobilization on Supports Activated with Glyoxyl<br>Groups. Methods in Molecular Biology, 2013, 1051, 59-71.                                                                                                                | 0.9 | 36        |
| 67 | Immobilization–stabilization of glucoamylase: Chemical modification of the enzyme surface followed<br>by covalent attachment on highly activated glyoxyl-agarose supports. Process Biochemistry, 2011, 46,<br>409-412.                                                       | 3.7 | 35        |
| 68 | Biocatalyst engineering of Thermomyces Lanuginosus lipase adsorbed on hydrophobic supports:<br>Modulation of enzyme properties for ethanolysis of oil in solvent-free systems. Journal of<br>Biotechnology, 2019, 289, 126-134.                                              | 3.8 | 35        |
| 69 | The Science of Enzyme Immobilization. Methods in Molecular Biology, 2020, 2100, 1-26.                                                                                                                                                                                        | 0.9 | 35        |
| 70 | Selective Ethanolysis of Fish Oil Catalyzed by Immobilized Lipases. JAOCS, Journal of the American Oil<br>Chemists' Society, 2014, 91, 63-69.                                                                                                                                | 1.9 | 34        |
| 71 | Hydrolysis of Tannic Acid Catalyzed by Immobilizedâ~'Stabilized Derivatives of Tannase from<br>Lactobacillus plantarum. Journal of Agricultural and Food Chemistry, 2010, 58, 6403-6409.                                                                                     | 5.2 | 33        |
| 72 | Modulation of the Selectivity of Immobilized Lipases by Chemical and Physical Modifications: Release<br>of Omega-3 Fatty Acids from Fish Oil. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89,<br>97-102.                                                     | 1.9 | 32        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Stabilization of Immobilized Lipases by Intense Intramolecular Cross-Linking of Their Surfaces by Using<br>Aldehyde-Dextran Polymers. International Journal of Molecular Sciences, 2018, 19, 553.                                                                    | 4.1 | 32        |
| 74 | Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases. Chemistry and Physics of Lipids, 2013, 174, 48-54.                                                                      | 3.2 | 31        |
| 75 | Enzymatic synthesis of triacylglycerols of docosahexaenoic acid: Transesterification of its ethyl esters with glycerol. Food Chemistry, 2015, 187, 225-229.                                                                                                          | 8.2 | 31        |
| 76 | Resolution of (±)-5-substituted-6-(5-chloropyridin-2-yl)-7-oxo-5,6-dihydropyrrolo[3,4b]pyrazine<br>derivatives-precursors of (S)-(+)-Zopiclone, catalyzed by immobilized Candida antarctica B lipase in<br>aqueous media. Tetrahedron: Asymmetry, 2003, 14, 429-438. | 1.8 | 30        |
| 77 | Partial and enantioselective hydrolysis of diethyl phenylmalonate by immobilized preparations of<br>lipase from Thermomyces lanuginose. Enzyme and Microbial Technology, 2007, 40, 1280-1285.                                                                        | 3.2 | 30        |
| 78 | Hydrolysis of Fish Oil by Lipases Immobilized Inside Porous Supports. JAOCS, Journal of the American<br>Oil Chemists' Society, 2011, 88, 819-826.                                                                                                                    | 1.9 | 30        |
| 79 | Immobilization and stabilization of a bimolecular aggregate of the lipase from Pseudomonas fluorescens by multipoint covalent attachment. Process Biochemistry, 2013, 48, 118-123.                                                                                   | 3.7 | 29        |
| 80 | Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from<br>Streptomyces halstedii. Process Biochemistry, 2013, 48, 478-483.                                                                                                  | 3.7 | 29        |
| 81 | Immobilization of Proteins on Glyoxyl Activated Supports: Dramatic Stabilization of Enzymes by<br>Multipoint Covalent Attachment on Pre-Existing Supports. Current Organic Chemistry, 2015, 19, 1-1.                                                                 | 1.6 | 28        |
| 82 | Separation and Immobilization of Lipase from Penicillium simplicissimum by Selective Adsorption on Hydrophobic Supports. Applied Biochemistry and Biotechnology, 2009, 156, 133-145.                                                                                 | 2.9 | 26        |
| 83 | Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by<br>immobilised derivatives of tannase from Lactobacillus plantarum. Food Chemistry, 2011, 128, 214-217.                                                              | 8.2 | 26        |
| 84 | Co-localization of oxidase and catalase inside a porous support to improve the elimination of<br>hydrogen peroxide: Oxidation of biogenic amines by amino oxidase from Pisum sativum. Enzyme and<br>Microbial Technology, 2018, 115, 73-80.                          | 3.2 | 26        |
| 85 | Co-immobilization of lipases and β- d -galactosidase onto magnetic nanoparticle supports: Biochemical characterization. Molecular Catalysis, 2018, 453, 12-21.                                                                                                       | 2.0 | 25        |
| 86 | Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Applied Microbiology and Biotechnology, 2018, 102, 773-787.                                           | 3.6 | 25        |
| 87 | Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl<br>esters catalyzed by immobilized Rhizomucor miehei lipase. Bioresource Technology, 2011, 102, 507-512.                                                              | 9.6 | 23        |
| 88 | Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: Determination<br>of thermal and organic solvent stabilities for applications in the oleochemical industry. Process<br>Biochemistry, 2015, 50, 561-570.                            | 3.7 | 23        |
| 89 | Stabilization of the lipase of Hypocrea pseudokoningii by multipoint covalent immobilization after chemical modification and application of the biocatalyst in oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2015, 121, 82-89.                        | 1.8 | 23        |
| 90 | Regioselective hydrolysis of peracetylated α-D-glucopyranose catalyzed by immobilized lipases in<br>aqueous medium. A facile preparation of useful intermediates for oligosaccharide synthesis.<br>Bioorganic and Medicinal Chemistry Letters, 1999, 9, 633-636.     | 2.2 | 22        |

| #   | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Changes on enantioselectivity of a genetically modified thermophilic lipase by site-directed oriented immobilization. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 121-127.                                                                                       | 1.8 | 22        |
| 92  | Immobilization of Lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on Different<br>Hydrophobic Supports: Modulation of Functional Properties. Molecules, 2017, 22, 339.                                                                                          | 3.8 | 22        |
| 93  | Hydrolysis of fish oil by hyperactivated <i>rhizomucor miehei</i> lipase immobilized by multipoint anion exchange. Biotechnology Progress, 2011, 27, 961-968.                                                                                                               | 2.6 | 21        |
| 94  | Medium engineering on modified Geobacillus thermocatenulatus lipase to prepare highly active catalysts. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 144-148.                                                                                                     | 1.8 | 19        |
| 95  | Immobilization Effects on the Catalytic Properties of Two Fusarium Verticillioides Lipases: Stability,<br>Hydrolysis, Transesterification and Enantioselectivity Improvement. Catalysts, 2018, 8, 84.                                                                       | 3.5 | 19        |
| 96  | Thermotolerant lipase from Penicillium sp. section Gracilenta CBMAI 1583: Effect of carbon sources<br>on enzyme production, biochemical properties of crude and purified enzyme and substrate specificity.<br>Biocatalysis and Agricultural Biotechnology, 2019, 17, 15-24. | 3.1 | 19        |
| 97  | Asymmetric hydrolysis of dimethyl 3-phenylglutarate catalyzed by Lecitase Ultra®. Enzyme and<br>Microbial Technology, 2008, 43, 531-536.                                                                                                                                    | 3.2 | 18        |
| 98  | Protein hydrolysis by immobilized and stabilized trypsin. Biotechnology Progress, 2011, 27, 677-683.                                                                                                                                                                        | 2.6 | 18        |
| 99  | Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel<br>catalysis. Frontiers in Microbiology, 2015, 6, 1083.                                                                                                                | 3.5 | 17        |
| 100 | Critical Role of Different Immobilized Biocatalysts of a Given Lipase in the Selective Ethanolysis of<br>Sardine Oil. Journal of Agricultural and Food Chemistry, 2017, 65, 117-122.                                                                                        | 5.2 | 17        |
| 101 | High stabilization of immobilized Rhizomucor miehei lipase by additional coating with hydrophilic<br>crosslinked polymers: Poly-allylamine/Aldehyde–dextran. Process Biochemistry, 2020, 92, 156-163.                                                                       | 3.7 | 17        |
| 102 | A chemo-biocatalytic approach in the synthesis of β-O-naphtylmethyl-N-peracetylated lactosamine.<br>Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 106-112.                                                                                                      | 1.8 | 16        |
| 103 | Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support.<br>International Dairy Journal, 2013, 28, 76-82.                                                                                                                     | 3.0 | 16        |
| 104 | Sequential hydrolysis of commercial casein hydrolysate by immobilized trypsin and thermolysin to produce bioactive phosphopeptides. Biocatalysis and Biotransformation, 2018, 36, 159-171.                                                                                  | 2.0 | 15        |
| 105 | Fine Modulation of the Catalytic Properties of Rhizomucor miehei Lipase Driven by Different<br>Immobilization Strategies for the Selective Hydrolysis of Fish Oil. Molecules, 2020, 25, 545.                                                                                | 3.8 | 15        |
| 106 | Resolution of paroxetine precursor using different lipases. Enzyme and Microbial Technology, 2004, 34, 264-269.                                                                                                                                                             | 3.2 | 14        |
| 107 | Reactivation of a thermostable lipase by solid phase unfolding/refolding. Enzyme and Microbial Technology, 2011, 49, 388-394.                                                                                                                                               | 3.2 | 14        |
| 108 | Dramatic hyperactivation of lipase of Thermomyces lanuginosa by a cationic surfactant: Fixation of the hyperactivated form by adsorption on sulfopropyl-sepharose. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 199-203.                                         | 1.8 | 14        |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Production of omega-3 polyunsaturated fatty acids through hydrolysis of fish oil by Candida rugosa<br>lipase immobilized and stabilized on different supports. Biocatalysis and Biotransformation, 2017, 35,<br>63-73.                                    | 2.0 | 14        |
| 110 | Immobilization and stabilization of commercial β-1,4-endoxylanase Depolâ,,¢ 333MDP by multipoint<br>covalent attachment for xylan hydrolysis: Production of prebiotics (xylo-oligosaccharides).<br>Biocatalysis and Biotransformation, 2018, 36, 141-150. | 2.0 | 14        |
| 111 | Immobilization of Lipases by Adsorption on Hydrophobic Supports: Modulation of Enzyme Properties in<br>Biotransformations in Anhydrous Media. Methods in Molecular Biology, 2020, 2100, 143-158.                                                          | 0.9 | 14        |
| 112 | A mild intensity of the enzyme-support multi-point attachment promotes the optimal stabilization of mesophilic multimeric enzymes: Amine oxidase from Pisum sativum. Journal of Biotechnology, 2020, 318, 39-44.                                          | 3.8 | 13        |
| 113 | Enantioselective Synthesis of Phenylacetamides in the Presence of High Organic Cosolvent<br>Concentrations Catalyzed by Stabilized Penicillin G Acylase. Effect of the Acyl Donor. Biotechnology<br>Progress, 2004, 20, 984-988.                          | 2.6 | 12        |
| 114 | Solid-phase amination of Geotrichum candidum lipase: ionic immobilization, stabilization and fish oil<br>hydrolysis for the production of Omega-3 polyunsaturated fatty acids. European Food Research and<br>Technology, 2017, 243, 1375-1384.            | 3.3 | 12        |
| 115 | Thermodynamically Controlled Synthesis of Amide Bonds Catalyzed by Highly Organic<br>Solvent-Resistant Penicillin Acylase Derivatives. Biotechnology Progress, 2008, 20, 117-121.                                                                         | 2.6 | 11        |
| 116 | Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical<br>Modification: Stabilization of Industrial Enzymes. Methods in Molecular Biology, 2020, 2100, 93-107.                                                   | 0.9 | 11        |
| 117 | β-xylosidase from <i>Selenomonas ruminantium</i> : Immobilization, stabilization, and application for xylooligosaccharide hydrolysis. Biocatalysis and Biotransformation, 2016, 34, 161-171.                                                              | 2.0 | 10        |
| 118 | Influence of different immobilization techniques to improve the enantioselectivity of lipase from<br>Geotrichum candidum applied on the resolution of mandelic acid. Molecular Catalysis, 2018, 458, 89-96.                                               | 2.0 | 10        |
| 119 | Stabilization of Multimeric Enzymes via Immobilization and Further Cross-Linking with Aldehyde-Dextran. Methods in Molecular Biology, 2020, 2100, 175-187.                                                                                                | 0.9 | 10        |
| 120 | Oriented Covalent Immobilization of Enzymes on Heterofunctional-Glyoxyl Supports. Methods in<br>Molecular Biology, 2013, 1051, 73-88.                                                                                                                     | 0.9 | 10        |
| 121 | Asymmetric hydrolysis of dimethyl phenylmalonate by immobilized penicillin G acylase from E. coli.<br>Enzyme and Microbial Technology, 2007, 40, 997-1000.                                                                                                | 3.2 | 9         |
| 122 | Enzymatic transesterification in a solvent-free system: synthesis of sn-2 docosahexaenoyl monoacylglycerol. Biocatalysis and Biotransformation, 2018, 36, 265-270.                                                                                        | 2.0 | 9         |
| 123 | Immobilization of Eversa Lipases on Hydrophobic Supports for Ethanolysis of Sunflower Oil<br>Solvent-Free. Applied Biochemistry and Biotechnology, 2022, 194, 2151-2167.                                                                                  | 2.9 | 9         |
| 124 | Co-Immobilization and Co-Localization of Multi-Enzyme Systems on Porous Materials. Methods in Molecular Biology, 2020, 2100, 297-308.                                                                                                                     | 0.9 | 8         |
| 125 | Purification, Immobilization, Hyperactivation, and Stabilization of Lipases by Selective Adsorption on<br>Hydrophobic Supports. Methods in Biotechnology, 2006, , 143-152.                                                                                | 0.2 | 7         |
| 126 | Crystallization and preliminary X-ray diffraction studies of the BTL2 lipase from the extremophilic<br>microorganism <i>Bacillus thermocatenulatus</i> . Acta Crystallographica Section F: Structural<br>Biology Communications, 2008, 64, 1043-1045.     | 0.7 | 7         |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis<br>Fused with the Zbasic Domain. Catalysts, 2020, 10, 810.                                                    | 3.5 | 7         |
| 128 | Stabilization of Glycosylated β-Glucosidase by Intramolecular Crosslinking Between Oxidized<br>Glycosidic Chains and Lysine Residues. Applied Biochemistry and Biotechnology, 2020, 192, 325-337.                 | 2.9 | 7         |
| 129 | Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii. Molecules, 2017, 22, 1448.                                                                                              | 3.8 | 6         |
| 130 | Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. Bioprocess and Biosystems Engineering, 2020, 43, 2107-2115.                          | 3.4 | 6         |
| 131 | Capture of enzyme aggregates by covalent immobilization on solid supports. Relevant stabilization of enzymes by aggregation. Journal of Biotechnology, 2021, 325, 138-144.                                        | 3.8 | 6         |
| 132 | Stabilization of Multimeric Enzymes Via Immobilization and Further Cross-Linking With<br>Aldehyde-Dextran. Methods in Biotechnology, 2006, , 129-141.                                                             | 0.2 | 5         |
| 133 | One-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical<br>Modification: Immobilized "Native Enzymes― Methods in Molecular Biology, 2020, 2100, 83-92.                      | 0.9 | 3         |
| 134 | Immobilization of Yarrowia lipolytica Lipase—A Comparison of Stability of Physical Adsorption and<br>Covalent Attachment Techniques. , 2007, , 169-176.                                                           |     | 3         |
| 135 | Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis. Catalysts, 2021, 11, 1236.                                                                          | 3.5 | 3         |
| 136 | Synthesis of sn-2 docosahexaenoyl monoacylglycerol by mild enzymatic transesterification of<br>docosahexaenoic acid ethyl ester and glycerol in a solvent-free system. Cogent Food and Agriculture,<br>2016, 2, . | 1.4 | 2         |
| 137 | Stabilization of Lecitase Ultra® by Immobilization and Fixation of Bimolecular Aggregates. Release of<br>Omega-3 Fatty Acids by Enzymatic Hydrolysis of Krill Oil. Catalysts, 2021, 11, 1067.                     | 3.5 | 1         |
| 138 | Immobilization and Stabilization of Proteins by Multipoint Covalent Attachment on Novel Amino-Epoxy-Sepabeads®. Methods in Biotechnology, 2006, , 153-162.                                                        | 0.2 | 1         |
| 139 | Preparation of an Industrial Biocatalyst of Penicillin G Acylase on Sepabeads. , 2005, , 273-288.                                                                                                                 |     | 0         |
| 140 | Conformational Engineering of Lipases via Directed Immobilisation: Improving the Resolution of Chiral Drugs. Medicinal Chemistry Reviews Online, 2005, 2, 369-378.                                                | 0.1 | 0         |