Elena Cattaneo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2756527/publications.pdf

Version: 2024-02-01

181 papers 21,161 citations

13865 67 h-index 9860 141 g-index

191 all docs

191 docs citations

191 times ranked

23918 citing authors

#	Article	IF	CITATIONS
1	A Gene Network Regulating Lysosomal Biogenesis and Function. Science, 2009, 325, 473-477.	12.6	1,958
2	Loss of Huntingtin-Mediated BDNF Gene Transcription in Huntington's Disease. Science, 2001, 293, 493-498.	12.6	1,191
3	Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 2003, 35, 76-83.	21.4	807
4	Brain-derived neurotrophic factor in neurodegenerative diseases. Nature Reviews Neurology, 2009, 5, 311-322.	10.1	803
5	Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell. PLoS Biology, 2005, 3, e283.	5.6	761
6	Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease. Physiological Reviews, 2010, 90, 905-981.	28.8	732
7	Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature, 1990, 347, 762-765.	27.8	692
8	SUMO Modification of Huntingtin and Huntington's Disease Pathology. Science, 2004, 304, 100-104.	12.6	627
9	Normal huntingtin function: an alternative approach to Huntington's disease. Nature Reviews Neuroscience, 2005, 6, 919-930.	10.2	590
10	Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells. Human Molecular Genetics, 2000, 9, 2799-2809.	2.9	556
11	Role of brain-derived neurotrophic factor in Huntington's disease. Progress in Neurobiology, 2007, 81, 294-330.	5.7	486
12	Gene therapy of experimental brain tumors using neural progenitor cells. Nature Medicine, 2000, 6, 447-450.	30.7	450
13	Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10483-10487.	7.1	390
14	EMSY Links the BRCA2 Pathway to Sporadic Breast and Ovarian Cancer. Cell, 2003, 115, 523-535.	28.9	389
15	Wild-Type Huntingtin Protects from Apoptosis Upstream of Caspase-3. Journal of Neuroscience, 2000, 20, 3705-3713.	3.6	349
16	A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiology of Disease, 2008, 29, 438-445.	4.4	338
17	Inhibiting Caspase Cleavage of Huntingtin Reduces Toxicity and Aggregate Formation in Neuronal and Nonneuronal Cells. Journal of Biological Chemistry, 2000, 275, 19831-19838.	3.4	320
18	Neural stem cell therapy for neurological diseases: dreams and reality. Nature Reviews Neuroscience, 2002, 3, 401-409.	10.2	283

#	Article	IF	CITATIONS
19	Neural stem cell systems: physiological players or in vitro entities?. Nature Reviews Neuroscience, 2010, 11, 176-187.	10.2	281
20	Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nature Neuroscience, 2014, 17, 513-521.	14.8	274
21	Widespread Disruption of Repressor Element-1 Silencing Transcription Factor/Neuron-Restrictive Silencer Factor Occupancy at Its Target Genes in Huntington's Disease. Journal of Neuroscience, 2007, 27, 6972-6983.	3.6	257
22	Dysfunction of the Cholesterol Biosynthetic Pathway in Huntington's Disease. Journal of Neuroscience, 2005, 25, 9932-9939.	3.6	236
23	New ISSCR Guidelines Underscore Major Principles for Responsible Translational Stem Cell Research. Cell Stem Cell, 2008, 3, 607-609.	11.1	218
24	Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Molecular and Cellular Neurosciences, 2008, 38, 245-258.	2.2	199
25	RESEARCH ARTICLE: Systematic Assessment of BDNF and Its Receptor Levels in Human Cortices Affected by Huntington's Disease. Brain Pathology, 2008, 18, 225-238.	4.1	197
26	Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Human Molecular Genetics, 2002, 11, 1953-1965.	2.9	189
27	Survival, Integration, and Differentiation of Neural Stem Cell Lines after Transplantation to the Adult Rat Striatum. Experimental Neurology, 1997, 145, 342-360.	4.1	178
28	Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacological Research, 2005, 52, 133-139.	7.1	170
29	Calcium Homeostasis and Mitochondrial Dysfunction in Striatal Neurons of Huntington Disease. Journal of Biological Chemistry, 2008, 283, 5780-5789.	3.4	168
30	The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiology of Disease, 2012, 46, 41-51.	4.4	159
31	Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development (Cambridge), 2013, 140, 301-312.	2.5	146
32	Cholesterol Defect Is Marked across Multiple Rodent Models of Huntington's Disease and Is Manifest in Astrocytes. Journal of Neuroscience, 2010, 30, 10844-10850.	3.6	136
33	Huntingtin's Neuroprotective Activity Occurs via Inhibition of Procaspase-9 Processing. Journal of Biological Chemistry, 2001, 276, 14545-14548.	3.4	134
34	The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiology of Disease, 2010, 39, 28-39.	4.4	134
35	Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington's disease. Brain, 2008, 131, 2851-2859.	7.6	127
36	Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. Journal of Neuroscience Research, 1998, 53, 223-234.	2.9	123

#	Article	IF	CITATIONS
37	Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neuroscience, 2004, 5, 57.	1.9	122
38	Brain-Derived Neurotrophic Factor in Patients with Huntington's Disease. PLoS ONE, 2011, 6, e22966.	2.5	118
39	Peroxisome-Proliferator-Activated Receptor Gamma Coactivator 1 Â Contributes to Dysmyelination in Experimental Models of Huntington's Disease. Journal of Neuroscience, 2011, 31, 9544-9553.	3.6	117
40	Proteasome Activator Enhances Survival of Huntington's Disease Neuronal Model Cells. PLoS ONE, 2007, 2, e238.	2.5	110
41	Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Human Molecular Genetics, 2007, 16, 2187-2198.	2.9	106
42	Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington's disease. Neurobiology of Disease, 2007, 28, 133-142.	4.4	104
43	iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nature Communications, 2013, 4, 2597.	12.8	104
44	Members of the JAK/STAT proteins are expressed and regulated during development in the mammalian forebrain., 1998, 54, 320-330.		103
45	Shc signaling in differentiating neural progenitor cells. Nature Neuroscience, 2001, 4, 579-586.	14.8	103
46	Emerging roles for SH2/PTB-containing Shc adaptor proteins in the developing mammalian brain. Trends in Neurosciences, 1998, 21, 476-481.	8.6	102
47	Emerging roles for cholesterol in Huntington's disease. Trends in Neurosciences, 2011, 34, 474-486.	8.6	102
48	EZ spheres: A stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs. Stem Cell Research, 2013, 10, 417-427.	0.7	102
49	Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Therapy, 2003, 10, 396-402.	4. 6	99
50	An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nature Neuroscience, 2012, 15, 713-721.	14.8	99
51	Characterization of a p75NTR Apoptotic Signaling Pathway Using a Novel Cellular Model. Journal of Biological Chemistry, 2001, 276, 33812-33820.	3.4	98
52	Signalling through the JAK–STAT pathway in the developing brain. Trends in Neurosciences, 1999, 22, 365-369.	8.6	97
53	Depletion of wild-type huntingtin in mouse models of neurologic diseases. Journal of Neurochemistry, 2003, 87, 101-106.	3.9	97
54	Human accelerated region 1 noncoding RNA is repressed by REST in Huntington's disease. Physiological Genomics, 2010, 41, 269-274.	2.3	97

#	Article	IF	Citations
55	A Transgenic Minipig Model of Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 47-68.	1.9	94
56	Huntington's Disease. Handbook of Experimental Pharmacology, 2014, 220, 357-409.	1.8	90
57	Aberrant amplification of A 2A receptor signaling in striatal cells expressing mutant huntingtin. FASEB Journal, 2001, 15, 1245-1247.	0.5	84
58	Cholesterolâ€loaded nanoparticles ameliorate synaptic and cognitive function in <scp>H</scp> untington's disease mice. EMBO Molecular Medicine, 2015, 7, 1547-1564.	6.9	84
59	CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice. Molecular and Cellular Neurosciences, 2008, 39, 8-20.	2.2	83
60	REST Controls Self-Renewal and Tumorigenic Competence of Human Glioblastoma Cells. PLoS ONE, 2012, 7, e38486.	2.5	82
61	Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. EMBO Journal, 2013, 32, 1489-1495.	7.8	79
62	Phylogenetic Comparison of Huntingtin Homologues Reveals the Appearance of a Primitive polyQ in Sea Urchin. Molecular Biology and Evolution, 2008, 25, 330-338.	8.9	78
63	A short term analysis of the behaviour of conditionally immortalized neuronal progenitors and primary neuroepithelial cells implanted into the fetal rat brain. Developmental Brain Research, 1994, 83, 197-208.	1.7	75
64	Aberrant A 2A receptor function in peripheral blood cells in Huntington's disease. FASEB Journal, 2003, 17, 1-16.	0.5	75
65	Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiology of Disease, 2006, 23, 44-53.	4.4	75
66	Calcium-dependent Cleavage of Endogenous Wild-type Huntingtin in Primary Cortical Neurons. Journal of Biological Chemistry, 2002, 277, 39594-39598.	3.4	73
67	Limited Efficacy of the HSV-TK/GCV System for Gene Therapy of Malignant Gliomas and Perspectives for the Combined Transduction of the Interleukin-4 Gene. Human Gene Therapy, 1997, 8, 1345-1353.	2.7	69
68	ST14A Cells Have Properties of a Medium-Size Spiny Neuron. Experimental Neurology, 2001, 167, 215-226.	4.1	69
69	Modeling Huntington's Disease in Cells, Flies, and Mice. Molecular Neurobiology, 2001, 23, 21-52.	4.0	69
70	Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Experimental Neurology, 2004, 190, 42-58.	4.1	69
71	High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells, 2013, 31, 1816-1828.	3.2	69
72	Neural Stem Cell Systems: Diversities and Properties after Transplantation in Animal Models of Diseases. Brain Pathology, 2006, 16, 143-154.	4.1	66

#	Article	IF	Citations
73	Molecular and functional definition of the developing human striatum. Nature Neuroscience, 2014, 17, 1804-1815.	14.8	65
74	Cholesterol dysfunction in neurodegenerative diseases: Is Huntington's disease in the list?. Progress in Neurobiology, 2006, 80, 165-176.	5.7	63
75	Phosphorylation of huntingtin at residue T3 is decreased in Huntington's disease and modulates mutant huntingtin protein conformation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10809-E10818.	7.1	63
76	DNAJB6, a Key Factor in Neuronal Sensitivity to Amyloidogenesis. Molecular Cell, 2020, 78, 346-358.e9.	9.7	62
77	Human Pluripotent Stem Cell Differentiation into Authentic Striatal Projection Neurons. Stem Cell Reviews and Reports, 2013, 9, 461-474.	5.6	60
78	c-fos induction by estrogen in specific rat brain areas. European Journal of Pharmacology, 1990, 188, 153-159.	2.6	58
79	Identifying and manipulating neuronal stem cells. Trends in Neurosciences, 1991, 14, 338-340.	8.6	58
80	Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes. Neurobiology of Disease, 2007, 27, 108-116.	4.4	58
81	Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. European Journal of Neuroscience, 2003, 18, 1093-1102.	2.6	57
82	ErbB4 Expression in Neural Progenitor Cells (ST14A) Is Necessary to Mediate Neuregulin- $1\hat{l}^21$ -induced Migration. Journal of Biological Chemistry, 2004, 279, 48808-48816.	3.4	57
83	STAT signalling in the mature and aging brain. International Journal of Developmental Neuroscience, 2000, 18, 439-446.	1.6	55
84	Neuropotent self-renewing neural stem (NS) cells derived from mouse induced pluripotent stem (iPS) cells. Molecular and Cellular Neurosciences, 2010, 43, 287-295.	2.2	55
85	Patients Beware: Commercialized Stem Cell Treatments on the Web. Cell Stem Cell, 2010, 7, 43-49.	11.1	50
86	SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington's disease. Bioorganic and Medicinal Chemistry, 2008, 16, 5695-5703.	3.0	49
87	Wnt5a Is a Transcriptional Target of Dlx Homeogenes and Promotes Differentiation of Interneuron Progenitors In Vitro and In Vivo. Journal of Neuroscience, 2011, 31, 2675-2687.	3.6	49
88	NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiology of Disease, 2012, 48, 282-289.	4.4	47
89	Blood level of brain-derived neurotrophic factor mRNA is progressively reduced in rodent models of Huntington's disease: Restoration by the neuroprotective compound CEP-1347. Molecular and Cellular Neurosciences, 2008, 39, 1-7.	2.2	46
90	Expressed Alu repeats as a novel, reliable tool for normalization of real-time quantitative RT-PCR data. Genome Biology, 2010, 11, R9.	9.6	44

#	Article	IF	Citations
91	Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington's disease. Journal of Neurochemistry, 2011, 116, 415-425.	3.9	44
92	Binding of the repressor complex RESTâ€ <scp>mSIN</scp> 3b by small molecules restores neuronal gene transcription in Huntington's disease models. Journal of Neurochemistry, 2013, 127, 22-35.	3.9	44
93	Forkhead Transcription Factor FOXO3a Levels Are Increased in Huntington Disease Because of Overactivated Positive Autofeedback Loop. Journal of Biological Chemistry, 2014, 289, 32845-32857.	3.4	42
94	Stem cells: Taking a stand against pseudoscience. Nature, 2014, 510, 333-335.	27.8	42
95	Activation of the JAK/STAT Pathway Leads to Proliferation of ST14A Central Nervous System Progenitor Cells. Journal of Biological Chemistry, 1996, 271, 23374-23379.	3.4	41
96	Expression of the JAK and STAT superfamilies in human meningiomas. Journal of Neurosurgery, 1999, 91, 440-446.	1.6	41
97	Selective inhibitors of death in mutant huntingtin cells. , 2007, 3, 99-100.		41
98	Sexâ€specific effects of the Huntington gene on normal neurodevelopment. Journal of Neuroscience Research, 2017, 95, 398-408.	2.9	41
99	The coding and long noncoding single-cell atlas of the developing human fetal striatum. Science, 2021, 372, .	12.6	40
100	Loss of Huntingtin Function Complemented by Small Molecules Acting as Repressor Element 1/Neuron Restrictive Silencer Element Silencer Modulators*. Journal of Biological Chemistry, 2007, 282, 24554-24562.	3.4	39
101	Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington's disease. Journal of Clinical Investigation, 2019, 129, 2390-2403.	8.2	38
102	Prevention of cytosolic IAPs degradation: a potential pharmacological target in Huntington's Disease. Pharmacological Research, 2005, 52, 140-150.	7.1	37
103	<i>InÂvitro</i> and <i>inÂvivo</i> models of <scp>H</scp> untington's disease show alterations in the endocannabinoid system. FEBS Journal, 2013, 280, 3376-3388.	4.7	37
104	Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death. Neurobiology of Disease, 2013, 50, 160-170.	4.4	36
105	Early and brain region-specific decrease of de novo cholesterol biosynthesis in Huntington's disease: A cross-validation study in Q175 knock-in mice. Neurobiology of Disease, 2017, 98, 66-76.	4.4	36
106	Induced pluripotent stem cell lines from Huntington's disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway. Neurobiology of Disease, 2012, 46, 30-40.	4.4	35
107	Intracerebral tetracycline-dependent regulation of gene expression in grafts of neural precursors. NeuroReport, 1996, 7, 1655-1659.	1.2	34
108	Preservation of positional identity in fetus-derived neural stem (NS) cells from different mouse central nervous system compartments. Cellular and Molecular Life Sciences, 2011, 68, 1769-1783.	5.4	34

#	Article	IF	CITATIONS
109	Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington's disease. Journal of Controlled Release, 2021, 330, 587-598.	9.9	33
110	Evaluation of Histone Deacetylases as Drug Targets in Huntington's Disease modelsStudy of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model PLOS Currents, 2010, 2, RRN1172.	1.4	33
111	Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells. Biochemical and Biophysical Research Communications, 2009, 379, 434-439.	2.1	32
112	hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nature Reviews Neurology, 2021, 17, 381-392.	10.1	30
113	Freshly dissociated fetal neural stem/progenitor cells do not turn into blood. Molecular and Cellular Neurosciences, 2003, 22, 179-187.	2.2	29
114	Shc3 affects human high-grade astrocytomas survival. Oncogene, 2005, 24, 5198-5206.	5.9	29
115	Turning REST/NRSF Dysfunction in Huntingtons Disease into a Pharmaceutical Target. Current Pharmaceutical Design, 2009, 15, 3958-3967.	1.9	29
116	Repressor elementâ€1 silencing transcription factor (<scp>REST</scp>) is present in human control and <scp>H</scp> untington's disease neurones. Neuropathology and Applied Neurobiology, 2014, 40, 899-910.	3.2	28
117	Differentiation of human telencephalic progenitor cells into MSNs by inducible expression of Gsx2 and Ebf1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1234-E1242.	7.1	28
118	Retroviral-mediated transfer of the galactocerebrosidase gene in neural progenitor cells. NeuroReport, 1998, 9, 3823-2827.	1.2	25
119	Ciliary Neurotrophic Factor May Activate Mature Astrocytes via Binding with the Leukemia Inhibitory Factor Receptor. Molecular and Cellular Neurosciences, 2001, 17, 373-384.	2.2	25
120	Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus. BMC Genomics, 2006, 7, 288.	2.8	24
121	Do amniotic fluid–derived stem cells differentiate into neurons in vitro?. Nature Biotechnology, 2008, 26, 269-270.	17.5	24
122	Stem Cell-Derived Human Striatal Progenitors Innervate Striatal Targets and Alleviate Sensorimotor Deficit in a Rat Model of Huntington Disease. Stem Cell Reports, 2020, 14, 876-891.	4.8	24
123	Dysfunction of Wild-Type Huntingtin in Huntington disease. Physiology, 2003, 18, 34-37.	3.1	23
124	Controlling neural stem cell division within the adult subventricular zone: an APPealing job. Trends in Neurosciences, 2005, 28, 57-59.	8.6	23
125	Systematic Chromosomal Analysis of Cultured Mouse Neural Stem Cell Lines. Stem Cells and Development, 2011, 20, 1411-1423.	2.1	23
126	Neural Stem Cells Engrafted in the Adult Brain Fuse with Endogenous Neurons. Stem Cells and Development, 2013, 22, 538-547.	2.1	22

#	Article	IF	CITATIONS
127	Efficacy of Cholesterol Nose-to-Brain Delivery for Brain Targeting in Huntington's Disease. ACS Chemical Neuroscience, 2020, 11, 367-372.	3.5	22
128	mSEL-1L (Suppressor/Enhancer Lin12-like) Protein Levels Influence Murine Neural Stem Cell Self-renewal and Lineage Commitment. Journal of Biological Chemistry, 2011, 286, 18708-18719.	3 . 4	21
129	Ciliary neurotrophic factor overexpression in neural progenitor cells (ST14A) increases proliferation, metabolic activity, and resistance to stress during differentiation. Journal of Neuroscience Research, 2003, 71, 228-236.	2.9	20
130	Upregulation and Activation of Stat6 Precede Vascular Smooth Muscle Cell Proliferation in Carotid Artery Injury Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 931-939.	2.4	19
131	Neural stem cells: a pharmacological tool for brain diseases?. Pharmacological Research, 2003, 47, 289-297.	7.1	19
132	Dynamic and Cell-Specific DACH1 Expression in Human Neocortical and Striatal Development. Cerebral Cortex, 2019, 29, 2115-2124.	2.9	19
133	No evidence of association between BDNF gene variants and age-at-onset of Huntington's disease. Neurobiology of Disease, 2006, 24, 274-279.	4.4	18
134	Analysis of the Repressor Element‹ Silencing Transcription Factor/Neuronâ€Restrictive Silencer Factor Occupancy of Nonâ€Neuronal Genes in Peripheral Lymphocytes from Patients with Huntington's Disease. Brain Pathology, 2010, 20, 96-105.	4.1	18
135	Gene expression profiling of ciliary neurotrophic factorâ€overexpressing rat striatal progenitor cells (ST14A) indicates improved stress response during the early stage of differentiation. Journal of Neuroscience Research, 2003, 73, 42-53.	2.9	17
136	<i>SREBP2</i> gene therapy targeting striatal astrocytes ameliorates Huntington's disease phenotypes. Brain, 2021, 144, 3175-3190.	7.6	17
137	Changes in \hat{l}^2 amyloid precursor protein secretion associated with the proliferative status of CNS derived progenitor cells. Neuroscience Letters, 1996, 212, 199-203.	2.1	16
138	Non-virally mediated gene transfer into human central nervous system precursor cells. Molecular Brain Research, 1996, 42, 161-166.	2.3	16
139	Mutant huntingtin goes straight to the heart. Nature Neuroscience, 2002, 5, 711-712.	14.8	15
140	Allele-specific silencing as treatment for gene duplication disorders: proof-of-principle in autosomal dominant leukodystrophy. Brain, 2019, 142, 1905-1920.	7.6	15
141	Protective role of Cop in Rip2/Caspase-1/Caspase-4-mediated HeLa cell death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 742-754.	3.8	14
142	Therapeutic potential of neural stem cells: greater in people's perception than in their brains?. Frontiers in Neuroscience, 2014, 8, 79.	2.8	14
143	Pitfalls in the detection of cholesterol in Huntington's disease models. PLOS Currents, 2012, 4, e505886e9a1968.	1.4	13
144	Striatal infusion of cholesterol promotes doseâ€dependent behavioral benefits and exerts diseaseâ€modifying effects in Huntington's disease mice. EMBO Molecular Medicine, 2020, 12, e12519.	6.9	13

#	Article	IF	Citations
145	Science under politics. EMBO Reports, 2011, 12, 19-22.	4.5	12
146	The evolutionary history of the polyQ tract in huntingtin sheds light on its functional pro-neural activities. Cell Death and Differentiation, 2022, 29, 293-305.	11.2	12
147	Wnt-5a expression in the rat neuronal progenitor cell line ST14A. Experimental Brain Research, 2004, 158, 189-95.	1.5	11
148	Characterization, developmental expression and evolutionary features of the huntingtin gene in the amphioxus Branchiostoma floridae. BMC Developmental Biology, 2007, 7, 127.	2.1	11
149	Adaptation of NS cells growth and differentiation to high-throughput screening-compatible plates. BMC Neuroscience, 2010, 11, 7.	1.9	11
150	ADAM10 hyperactivation acts on piccolo to deplete synaptic vesicle stores in Huntington's disease. Human Molecular Genetics, 2021, 30, 1175-1187.	2.9	11
151	Neural stem and progenitor cells: choosing the right Shc. Progress in Brain Research, 2004, 146, 127-133.	1.4	8
152	From target identification to drug screening assays for neurodegenerative diseases. Pharmacological Research, 2005, 52, 245-251.	7.1	8
153	Novel neural stem cell systems. Expert Opinion on Biological Therapy, 2008, 8, 153-160.	3.1	8
154	p66ShcA adaptor molecule accelerates ES cell neural induction. Molecular and Cellular Neurosciences, 2009, 41, 74-84.	2.2	8
155	A DNA transposon-based approach to functional screening in neural stem cells. Journal of Biotechnology, 2010, 150, 11-21.	3.8	8
156	Neuroprotection and brain cholesterol biosynthesis in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E143; author reply 144.	7.1	8
157	Novel and Immortalization-Based Protocols for the Generation of Neural CNS Stem Cell Lines for Gene Therapy Approaches. Methods in Molecular Biology, 2008, 438, 319-332.	0.9	7
158	Investigating DNA Methylation Dynamics and Safety of Human Embryonic Stem Cell Differentiation Toward Striatal Neurons. Stem Cells and Development, 2015, 24, 2366-2377.	2.1	6
159	The Huntington's Paradox. Scientific American, 2016, 315, 56-61.	1.0	6
160	Normal Function of Huntingtin. , 2014, , .		6
161	Huntingtin gene CAG repeat size affects autism risk: Familyâ€based and case–control association study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 341-351.	1.7	5
162	In VitroCharacterization of Embryionic ST14A-Cells. International Journal of Neuroscience, 2008, 118, 1489-1501.	1.6	4

#	Article	IF	CITATIONS
163	Foreword. Progress in Neurobiology, 2012, 97, 53.	5 . 7	4
164	Stamina therapies: Let the record stand. Nature, 2014, 506, 434-434.	27.8	4
165	RUES2 hESCs exhibit MGE-biased neuronal differentiation and muHTT-dependent defective specification hinting at SP1. Neurobiology of Disease, 2020, 146, 105140.	4.4	4
166	Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells. PLoS ONE, 2015, 10, e0126590.	2.5	4
167	Modeling Brain Pathologies Using Neural Stem Cells. , 2002, 198, 245-262.		3
168	The need for a standard for informed consent for collection of human fetal material. Stem Cell Reports, 2022, 17, 1245-1247.	4.8	3
169	The Function of the Neuronal Proteins Shc and Huntingtin in Stem Cells and Neurons: Pharmacologic Exploitation for Human Brain Diseases. Annals of the New York Academy of Sciences, 2005, 1049, 39-50.	3.8	2
170	Italy's stem-cell challenge gaining momentum. Nature, 2010, 463, 729-729.	27.8	2
171	Scattered primary and conditionally immortalized neuroepithelial cells transplanted into the embryonic rat brain differentiate into neurons and glial cells. Neuroscience Research Communications, 1996, 18, 175-183.	0.2	1
172	Gene Therapy Using Neural Stem Cells. , 2002, 198, 233-244.		1
173	Chromatin dysfunction in Huntington's disease. Progress in Neurobiology, 2007, 83, 193-194.	5 . 7	1
174	Neurologic Diseases., 2004,, 695-702.		1
175	HTT Evolution and Brain Development. Research and Perspectives in Neurosciences, 2013, , 41-55.	0.4	1
176	Ciliary neurotrophic factor overexpression in neural progenitor cells (ST14A) increases proliferation, metabolic activity, and resistance to stress during differentiation. Journal of Neuroscience Research, 2004, 75, 861-861.	2.9	0
177	Stem Cells for neurodegenerative diseases: Hopes and reality. Rendiconti Lincei, 2005, 16, 109-117.	2.2	0
178	A CRISPR-strategy for the generation of a detectable fluorescent hESC reporter line (WAe009-A-37) for the subpallial determinant GSX2. Stem Cell Research, 2020, 49, 102016.	0.7	0
179	Signalling from Tyrosine Kinases in the Developing Neurons and Glia of the Mammalian Brain. Results and Problems in Cell Differentiation, 2000, 30, 217-240.	0.7	0
180	Analyses of Intracellular Signal Transduction Pathways in CNS Progenitor Cells., 2002, , 1-13.		O

ARTICLE IF CITATIONS

181 Dans l'ombre de Huntington., 2017, N° 90, 14-20. O