
Alastair J M Key

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/275556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal Linear Estimation (OLE) Modeling Supports Early Holocene (9000–8000 RCYBP) Copper Tool Production in North America. American Antiquity, 2022, 87, 267-283.	1.1	8
2	Revisiting lithic edge characterization with microCT: multiscale study of edge curvature, re-entrant features, and profile geometry on Olduvai Gorge quartzite flakes. Archaeological and Anthropological Sciences, 2022, 14, 1.	1.8	14
3	Another tool in the experimental toolbox: On the use of aluminum as a substitute for chert in North American prehistoric ballistics research and beyond. North American Archaeologist, 2022, 43, 151-176.	0.5	5
4	North American Clovis Point Form and Performance III: An Experimental Assessment of Knife Cutting Efficiency. Lithic Technology, 2022, 47, 203-220.	1.1	13
5	On the earliest Acheulean in Britain: first dates and <i>in-situ</i> artefacts from the MIS 15 site of Fordwich (Kent, UK). Royal Society Open Science, 2022, 9, .	2.4	9
6	Kinetics of stone tool production among novice and expert tool makers. American Journal of Physical Anthropology, 2021, 174, 714-727.	2.1	18
7	Modelling the end of the Acheulean at global and continental levels suggests widespread persistence into the Middle Palaeolithic. Humanities and Social Sciences Communications, 2021, 8, .	2.9	12
8	Statistical inference of earlier origins for the first flaked stone technologies. Journal of Human Evolution, 2021, 154, 102976.	2.6	17
9	Why invent the handle? Electromyography (EMG) and efficiency of use data investigating the prehistoric origin and selection of hafted stone knives. Archaeological and Anthropological Sciences, 2021, 13, 1.	1.8	9
10	Reconstructing the full temporal range of archaeological phenomena from sparse data. Journal of Archaeological Science, 2021, 135, 105479.	2.4	9
11	Raw material optimization and stone tool engineering in the Early Stone Age of Olduvai Gorge (Tanzania). Journal of the Royal Society Interface, 2020, 17, 20190377.	3.4	30
12	Rediscovery of fossils from the middle gravels and lower loam at Barnfield Pit, Swanscombe, Kent (UK). Journal of Archaeological Science: Reports, 2020, 34, 102668.	0.5	0
13	Muscle recruitment and stone tool use ergonomics across three million years of Palaeolithic technological transitions. Journal of Human Evolution, 2020, 144, 102796.	2.6	12
14	Miniaturization optimized weapon killing power during the social stress of late pre-contact North America (AD 600-1600). PLoS ONE, 2020, 15, e0230348.	2.5	28
15	Torque creation and force variation along the cutting edges of Acheulean handaxes: implications for tip thinning, resharpening and tranchet flake removals. Journal of Archaeological Science, 2020, 120, 105189.	2.4	10
16	The unexpected importance of the fifth digit during stone tool production. Scientific Reports, 2019, 9, 16724.	3.3	15
17	Morphometric and technological analysis of Acheulean large cutting tools from Porzuna (Ciudad) Tj ETQq1 1 0.7 101992.	84314 rgB 0.5	BT /Overlock 3
18	The exceptional abandonment of metal tools by North American hunter-gatherers, 3000 B.P Scientific Reports, 2019, 9, 5756.	3.3	18

ALASTAIR J M KEY

#	Article	IF	CITATIONS
19	Early stage blunting causes rapid reductions in stone tool performance. Journal of Archaeological Science, 2018, 91, 1-11.	2.4	30
20	Comparing the use of meat and clay during cutting and projectile research. Engineering Fracture Mechanics, 2018, 192, 163-175.	4.3	26
21	A citation network analysis of lithic microwear research. Journal of Archaeological Science, 2018, 91, 33-42.	2.4	7
22	The manual pressures of stone tool behaviors and their implications for the evolution of the human hand. Journal of Human Evolution, 2018, 119, 14-26.	2.6	46
23	Investigating interrelationships between Lower Palaeolithic stone tool effectiveness and tool user biometric variation: implications for technological and evolutionary changes. Archaeological and Anthropological Sciences, 2018, 10, 989-1006.	1.8	27
24	Hand grip diversity and frequency during the use of Lower Palaeolithic stone cutting-tools. Journal of Human Evolution, 2018, 125, 137-158.	2.6	34
25	Manual restrictions on Palaeolithic technological behaviours. PeerJ, 2018, 6, e5399.	2.0	16
26	Influence of Handaxe Size and Shape on Cutting Efficiency: A Large-Scale Experiment and Morphometric Analysis. Journal of Archaeological Method and Theory, 2017, 24, 514-541.	3.0	44
27	Reassessing the production of handaxes versus flakes from a functional perspective. Archaeological and Anthropological Sciences, 2017, 9, 737-753.	1.8	37
28	Flake morphology as a record of manual pressure during stone tool production. Journal of Archaeological Science: Reports, 2017, 12, 43-53.	0.5	15
29	Form and function in the Lower Palaeolithic: history, progress, and continued relevance. Journal of Anthropological Sciences, 2017, 95, 67-108.	0.4	22
30	Looking at handaxes from another angle: Assessing the ergonomic and functional importance of edge form in Acheulean bifaces. Journal of Anthropological Archaeology, 2016, 44, 43-55.	1.6	45
31	Integrating Mechanical and Ergonomic Research within Functional and Morphological Analyses of Lithic Cutting Technology: Key Principles and Future Experimental Directions. Ethnoarchaeology, 2016, 8, 69-89.	1.4	45
32	Manual Loading Distribution During Carrying Behaviors: Implications for the Evolution of the Hominin Hand. PLoS ONE, 2016, 11, e0163801.	2.5	15
33	Quantifying lithic microwear with load variation on experimental basalt flakes using LSCM and area-scale fractal complexity (Asfc). Surface Topography: Metrology and Properties, 2015, 3, 034006.	1.6	33
34	Edge Angle as a Variably Influential Factor in Flake Cutting Efficiency: An Experimental Investigation of Its Relationship with Tool Size and Loading. Archaeometry, 2015, 57, 911-927.	1.3	62
35	The evolution of the hominin thumb and the influence exerted by the non-dominant hand during stone tool production. Journal of Human Evolution, 2015, 78, 60-69.	2.6	53
36	Is Loading a Significantly Influential Factor in the Development of Lithic Microwear? An Experimental Test Using LSCM on Basalt from Olduvai Gorge. Journal of Archaeological Method and Theory, 2015, 22, 1193-1214.	3.0	28

ALASTAIR J M KEY

#	Article	IF	CITATIONS
37	Are bigger flakes always better? An experimental assessment of flake size variation on cutting efficiency and loading. Journal of Archaeological Science, 2014, 41, 140-146.	2.4	68
38	Applied Force as a Determining Factor in Lithic Use-Wear Accrual: An Experimental Investigation of its Validity as a Method with which to Infer Hominin Upper Limb Biomechanics. Lithic Technology, 2013, 38, 32-45.	1.1	19
39	Technology based evolution? A biometric test of the effects of handsize versus tool form on efficiency in an experimental cutting task. Journal of Archaeological Science, 2011, 38, 1663-1670.	2.4	44