George Keefe Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2755428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating the application of Kalman Filters for real-time accountancy in fusion fuel cycles. Fusion Engineering and Design, 2022, 176, 113037.	1.9	3
2	Preventing Tritium Memory Effects in Ion Chambers Using Ultraviolet LEDs. IEEE Transactions on Nuclear Science, 2022, 69, 1092-1097.	2.0	1
3	Pd ₈₀ Co ₂₀ Nanohole Arrays Coated with Poly(methyl methacrylate) for High-Speed Hydrogen Sensing with a Part-per-Billion Detection Limit. ACS Applied Nano Materials, 2021, 4, 3664-3674.	5.0	5
4	Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nature Communications, 2021, 12, 2414.	12.8	40
5	Water Processing for Isotope Recovery Using Porous Zero Valent Iron. Fusion Science and Technology, 2020, 76, 13-20.	1.1	2
6	An Evaluation of the Global Effects of Tritium Emissions from Nuclear Fusion Power. Fusion Engineering and Design, 2020, 158, 111690.	1.9	6
7	Origin of Rashba Spin-Orbit Coupling in 2D and 3D Lead Iodide Perovskites. Scientific Reports, 2020, 10, 4964.	3.3	23
8	Bilayer plasmonic nano-lattices for tunable hydrogen sensing platform. Nano Energy, 2020, 71, 104558.	16.0	12
9	Controlled Release of Hydrogen Isotopes from Hydride-Magnetic Nanomaterials. ACS Applied Materials & Interfaces, 2020, 12, 9478-9488.	8.0	18
10	Magnetically tunable organic semiconductors with superparamagnetic nanoparticles. Materials Horizons, 2019, 6, 1913-1922.	12.2	5
11	Plasmonic sensing of hydrogen in Pd nano-hole arrays. , 2019, , .		2
12	Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration. Jom, 2017, 69, 162-172.	1.9	15
13	Tritium Contamination Prevention Using Sacrificial Materials. Fusion Science and Technology, 2017, 71, 628-633.	1.1	0
14	Nanoscale Materials: Fundamentals and Emergent Properties. Nanostructure Science and Technology, 2017, , 7-28.	0.1	1
15	Characterization of Anisotropic and Shape-Selective Nanomaterials: Methods and Challenges. Nanostructure Science and Technology, 2017, , 79-101.	0.1	0
16	Synthetic Strategies for Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology, 2017, , 29-77.	0.1	1
17	Large circular dichroism and optical rotation in titanium doped chiral silver nanorods. Annalen Der Physik, 2016, 528, 677-683.	2.4	10
18	Porous Iron oxide nanorods and their photothermal applications. , 2016, , .		0

Porous Iron oxide nanorods and their photothermal applications. , 2016, , . 18

2

#	Article	IF	CITATIONS
19	Multifunctional Hybrid Fe ₂ 0 ₃ -Au Nanoparticles for Efficient Plasmonic Heating. Journal of Visualized Experiments, 2016, , 53598.	0.3	12
20	Multifunctional Fe ₂ O ₃ –Au Nanoparticles with Different Shapes: Enhanced Catalysis, Photothermal Effects, and Magnetic Recyclability. Journal of Physical Chemistry C, 2016, 120, 15162-15172.	3.1	78
21	Designed to Fail: Flexible, Anisotropic Silver Nanorod Sheets for Low-Cost Wireless Activity Monitoring. Journal of Physical Chemistry C, 2016, 120, 14969-14976.	3.1	6
22	Fe2O3–TiO2 core–shell nanorod arrays for visible light photocatalytic applications. Catalysis Today, 2016, 270, 51-58.	4.4	46
23	Nanoscale Conical Swiss Roll with Broadband Visible and NIR Circular Dichroism. Advanced Optical Materials, 2015, 3, 342-346.	7.3	19
24	Continuously tuning the spectral response of chiral plasmonic patchy particles through galvanic replacement reaction. RSC Advances, 2015, 5, 101257-101261.	3.6	4
25	Extracting the anisotropic optical parameters of chiral plasmonic nanostructured thin films using generalized ellipsometry. Applied Physics Letters, 2014, 105, .	3.3	19
26	Scalable Fabrication of Composite Ti/Ag Plasmonic Helices: Controlling Morphology and Optical Activity by Tailoring Material Properties. Advanced Optical Materials, 2014, 2, 245-249.	7.3	50
27	The fabrication of three-dimensional plasmonic chiral structures by dynamic shadowing growth. Nanoscale, 2014, 6, 9467.	5.6	35
28	Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers. Nano Letters, 2014, 14, 1976-1981.	9.1	84
29	Buckle-driven delamination of hydrophobic micro-, nano-, and heterostructured membranes without a sacrificial layer. Nanoscale, 2013, 5, 10853.	5.6	3
30	Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling. Applied Physics Letters, 2013, 102, .	3.3	15
31	α-Fe ₂ O ₃ Nanocolumns and Nanorods Fabricated by Electron Beam Evaporation for Visible Light Photocatalytic and Antimicrobial Applications. ACS Applied Materials & Interfaces, 2013, 5, 2085-2095.	8.0	105
32	Hidden Chirality in Superficially Racemic Patchy Silver Films. Nano Letters, 2013, 13, 6228-6232.	9.1	62
33	Tilting angle of nanocolumnar films fabricated by oblique angle deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 030606.	1.2	27
34	Nanostructured homogenous CdSe–TiO2 composite visible light photoanodes fabricated by oblique angle codeposition. Journal of Materials Chemistry, 2012, 22, 14205.	6.7	26
35	Ultrafast Charge Transfer Dynamics in Polycrystalline CdSe/TiO ₂ Nanorods Prepared by Oblique Angle Codeposition. Journal of Physical Chemistry C, 2012, 116, 5033-5041.	3.1	39
36	Structural, Optical, and Photocatalytic Properties of Cr:TiO2 Nanorod Array Fabricated by Oblique Angle Codeposition. Journal of Physical Chemistry C, 2011, 115, 16892-16903.	3.1	34