Amarshinh Jadhav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2755384/publications.pdf

Version: 2024-02-01

149 papers 4,405 citations

33 h-index 60 g-index

156 all docs

156 docs citations

156 times ranked 4978 citing authors

#	Article	IF	CITATIONS
1	Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse. Industrial & Description of the Technologies for Water Treatment and Reuse.	3.7	586
2	Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 2015, 162, 306-325.	7.8	427
3	Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Applied Catalysis B: Environmental, 2014, 147, 293-301.	20.2	146
4	Synergism of Clay and Heteropoly Acids as Nano-Catalysts for the Development of Green Processes with Potential Industrial Applications. Catalysis Surveys From Asia, 2005, 9, 117-137.	2.6	126
5	Biobased Green Process: Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethyl Furan under Mild Conditions Using Pd-Cs _{2.5} H _{0.5} PW ₁₂ O ₄₀ /K-10 Clay. ACS Sustainable Chemistry and Engineering, 2016, 4, 4113-4123.	6.7	105
6	Magnetically separable sulfated zirconia as highly active acidic catalysts for selective synthesis of ethyl levulinate from furfuryl alcohol. Green Chemistry, 2017, 19, 963-976.	9.0	87
7	The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-Ã-vis sustainability and the environment. Clean Technologies and Environmental Policy, 2020, 22, 1757-1774.	4.1	86
8	Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Solvothermal Carbonization for Esterification and Unsymmetrical Ether Formation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1963-1973.	6.7	84
9	Development of a green process for poly-α-olefin based lubricants. Green Chemistry, 2002, 4, 528-540.	9.0	76
10	Kinetics of the n-Butoxylation of p-Chloronitrobenzene under Liquidâ^'Liquidâ^'Liquid Phase Transfer Catalysis. Industrial & Engineering Chemistry Research, 1999, 38, 2245-2253.	3.7	73
11	A green process for glycerol valorization to glycerol carbonate over heterogeneous hydrotalcite catalyst. Catalysis Today, 2014, 237, 47-53.	4.4	73
12	Hydrogenolysis of Glycerol to 1,2-Propanediol over Nano-Fibrous Ag-OMS-2 Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 1549-1562.	3.7	66
13	Selective Hydrogenation of $\hat{l}\pm,\hat{l}^2\hat{a}\in U$ nsaturated Aldehydes and Ketones using Novel Manganese Oxide and Platinum Supported on Manganese Oxide Octahedral Molecular Sieves as Catalysts. ChemCatChem, 2013, 5, 506-512.	3.7	62
14	Cascade Engineered Synthesis of γ-Valerolactone, 1,4-Pentanediol, and 2-Methyltetrahydrofuran from Levulinic Acid Using Pd–Cu/ZrO ₂ Catalyst in Water as Solvent. ACS Sustainable Chemistry and Engineering, 2015, 3, 2619-2630.	6.7	61
15	Synergism between microwave irradiation and enzyme catalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol. Bioresource Technology, 2012, 109, 1-6.	9.6	57
16	Isomerization of Citronellal to Isopulegol Using Eclectically Engineered Sulfated Zirconiaâ^'Carbon Molecular Sieve Composite Catalysts, UDCaT-2. Langmuir, 2000, 16, 4072-4079.	3 . 5	55
17	Novel Efficient Mesoporous Solid Acid Catalyst UDCaT-4:Â Dehydration of 2-Propanol and Alkylation of Mesitylene. Langmuir, 2004, 20, 11607-11619.	3 . 5	55
18	Aldol condensation of benzaldehyde with heptanal to jasminaldehyde over novel Mg–Al mixed oxide on hexagonal mesoporous silica. Journal of Molecular Catalysis A, 2012, 355, 142-154.	4.8	55

#	Article	IF	CITATIONS
19	Graphene oxide and functionalized multi walled carbon nanotubes as epoxy curing agents: a novel synthetic approach to nanocomposites containing active nanostructured fillers. RSC Advances, 2014, 4, 49264-49272.	3.6	51
20	Arsenic Removal from Natural Waters by Adsorption or Ion Exchange: An Environmental Sustainability Assessment. Industrial & Engineering Chemistry Research, 2014, 53, 18920-18927.	3.7	50
21	Ni–Cu and Ni–Co Supported on La–Mg Based Metal Oxides Prepared by Coprecipitation and Impregnation for Superior Hydrogen Production via Steam Reforming of Glycerol. Industrial & Steam Reforming of Glycerol. Industrial & Steam Reforming Chemistry Research, 2018, 57, 4785-4797.	3.7	49
22	Rapid In Situ Encapsulation of Laccase into Metalâ€Organic Framework Support (ZIFâ€8) under Biocompatible Conditions. ChemistrySelect, 2018, 3, 4669-4675.	1.5	46
23	Transesterification of Edible and Nonedible Vegetable Oils with Alcohols over Heteropolyacids Supported on Acid-Treated Clay. Industrial & Engineering Chemistry Research, 2009, 48, 9408-9415.	3.7	45
24	Kinetics and Mechanism of Selective Monoacylation of Mesitylene. Industrial & Engineering Chemistry Research, 2002, 41, 5565-5575.	3.7	42
25	Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of RSâ€(±) Tj ETQq1	1 0.784314 r	gBT /Overloc
26	Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst. Catalysis Today, 2018, 309, 153-160.	4.4	40
27	Claisenâ€Schmidt Condensation using Green Catalytic Processes: A Critical Review. ChemistrySelect, 2020, 5, 9059-9085.	1.5	40
28	Title is missing!. Catalysis Letters, 1999, 62, 49-52.	2.6	39
29	Prediction of Liquid–Liquid Equilibria for Biofuel Applications by Quantum Chemical Calculations Using the Cosmo-SAC Method. Industrial & Engineering Chemistry Research, 2011, 50, 13066-13075.	3.7	39
30	Green Synthesis of Furfural Acetone by Solvent-Free Aldol Condensation of Furfural with Acetone over La ₂ O ₃ â€"MgO Mixed Oxide Catalyst. Industrial & Dineering Chemistry Research, 2019, 58, 16096-16105.	3.7	38
31	Novel aluminium exchanged dodecatungstophosphoric acid supported on K-10 clay as catalyst: benzoylation of diphenyloxide with benzoic anhydride. RSC Advances, 2016, 6, 49091-49100.	3.6	37
32	Aldol Condensation of 5-Hydroxymethylfurfural to Fuel Precursor over Novel Aluminum Exchanged-DTP@ZIF-8. ACS Sustainable Chemistry and Engineering, 2019, 7, 16215-16224.	6.7	37
33	Synergism of microwave irradiation and enzyme catalysis in synthesis of isoniazid. Journal of Chemical Technology and Biotechnology, 2007, 82, 964-970.	3.2	34
34	Selective synthesis of natural benzaldehyde by hydrolysis of cinnamaldehyde using novel hydrotalcite catalyst. Catalysis Today, 2013, 207, 162-169.	4.4	33
35	Selective Synthesis of Hydrocinnamaldehyde over Bimetallic Ni–Cu Nanocatalyst Supported on Graphene Oxide. Industrial & Engineering Chemistry Research, 2018, 57, 9083-9093.	3.7	31
36	Methanol economy and net zero emissions: critical analysis of catalytic processes, reactors and technologies. Green Chemistry, 2021, 23, 8361-8405.	9.0	31

#	Article	IF	CITATIONS
37	Synthesis of Geraniol Esters in a Continuous-Flow Packed-Bed Reactor of Immobilized Lipase: Optimization of Process Parameters and Kinetic Modeling. Applied Biochemistry and Biotechnology, 2018, 184, 630-643.	2.9	30
38	Green etherification of bioglycerol with 1-phenyl ethanol over supported heteropolyacid. Clean Technologies and Environmental Policy, 2012, 14, 85-95.	4.1	29
39	La–Mg mixed oxide as a highly basic water resistant catalyst for utilization of CO ₂ in the synthesis of quinazoline-2,4(1H,3H)-dione. RSC Advances, 2016, 6, 111079-111089.	3.6	29
40	Single-Step Hydrogenolysis of Furfural to 1,2-Pentanediol Using a Bifunctional Rh/OMS-2 Catalyst. ACS Omega, 2019, 4, 1201-1214.	3.5	29
41	Synthesis of carvacrol by Friedel–Crafts alkylation of <i>o</i> à€€resol with isopropanol using superacidic catalyst UDCaTâ€5. Journal of Chemical Technology and Biotechnology, 2009, 84, 1499-1508.	3.2	28
42	Kinetic Modeling and Statistical Optimization of Lipase Catalyzed Enantioselective Resolution of (R,S)-2-pentanol. Industrial & Engineering Chemistry Research, 2011, 50, 12975-12983.	3.7	28
43	Enantioselective Enzymatic Hydrolysis of <i>rac-</i> Mandelonitrile to <i>R</i> Mandelamide by Nitrile Hydratase Immobilized on Poly(vinyl alcohol)/Chitosan–Glutaraldehyde Support. Industrial & Engineering Chemistry Research, 2014, 53, 7986-7991.	3.7	28
44	Novel Mesoporous Solid Superacidic Catalysts:Â Activity and Selectivity in the Synthesis of Thymol by Isopropylation ofm-Cresol with 2-Propanol over UDCaT-4, -5, and -6. Journal of Physical Chemistry A, 2005, 109, 11080-11088.	2.5	27
45	Optimization and kinetic modeling of lipase catalyzed enantioselective N-acetylation of ($\hat{A}\pm$) Tj ETQq1 1 0.784314 Biotechnology, 2011, 86, 739-748.	4 rgBT /Ov 3 . 2	verlock 10 T 27
46	Noble metal promoted Ni–Cu/La2O3–MgO catalyst for renewable and enhanced hydrogen production via steam reforming of bio-based n-butanol: effect of promotion with Pt, Ru and Pd on catalytic activity and selectivity. Clean Technologies and Environmental Policy, 2019, 21, 1323-1339.	4.1	26
47	Palladium Nanoparticles Supported Carbon Based Graphene Oxide Monolith as Catalyst for Sonogashira Coupling and Hydrogenation of Nitrobenzene and Alkenes. ChemistrySelect, 2016, 1, 3954-3965.	1.5	25
48	Heterogeneous cycloaddition of styrene oxide with carbon dioxide for synthesis of styrene carbonate using reusable lanthanum–zirconium mixed oxide as catalyst. Clean Technologies and Environmental Policy, 2018, 20, 345-356.	4.1	25
49	Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of dl-(A±)-3-phenyllactic acid. Applied Microbiology and Biotechnology, 2012, 96, 69-79.	3.6	24
50	Selectivity engineering of O-methylation of hydroxybenzenes with dimethyl carbonate using ionic liquid as catalyst. Reaction Chemistry and Engineering, 2016, 1, 330-339.	3.7	23
51	Effect of Supercritical CO ₂ as Reaction Medium for Selective Hydrogenation of Acetophenone to 1-Phenylethanol. ACS Omega, 2018, 3, 7124-7132.	3.5	23
52	Synergism of Microwaves and Immobilized Enzyme Catalysis in Synthesis of Adipic Acid Esters in Nonaqueous Media. Synthetic Communications, 2005, 35, 1699-1705.	2.1	22
53	Selective engineering using Mg–Al calcined hydrotalcite and microwave irradiation in mono-transesterification of diethyl malonate with cyclohexanol. Chemical Engineering Journal, 2013, 230, 547-557.	12.7	22
54	Synergism of ultrasound and solid acids in intensification of Friedel–Crafts acylation of 2-methoxynaphthalene with acetic anhydride. Ultrasonics Sonochemistry, 2003, 10, 135-138.	8.2	21

#	Article	IF	CITATIONS
55	Selectivity Engineering of Phase Transfer Catalyzed Alkylation of 2â€-Hydroxyacetophenone:Â Enhancement in Rates and Selectivity by Creation of a Third Liquid Phase. Organic Process Research and Development, 2005, 9, 749-756.	2.7	21
56	Microwave assisted enzyme catalysis for synthesis of n-butyl dipheyl methyl mercapto acetate in non-aqueous media. Clean Technologies and Environmental Policy, 2007, 9, 281-287.	4.1	21
57	Cascade engineered phase transfer catalysis: a novel concept in green chemistry. Clean Technologies and Environmental Policy, 2003, 6, 32-42.	4.1	20
58	Intensification of Rates and Selectivity Using Tri-liquid versus Bi-liquid Phase Transfer Catalysis:Â Insight into Reduction of 4-Nitro-o-xylene with Sodium Sulfide. Industrial & Description (2007), 46, 2951-2961.	3.7	20
59	Synthesis of <i>n</i> à€butyl acetamide over immobilized lipase. Journal of Chemical Technology and Biotechnology, 2009, 84, 420-426.	3.2	20
60	Selectivity engineering of solid base catalyzed O-methylation of 2-naphthol with dimethyl carbonate to 2-methoxynaphthalene. Catalysis Today, 2013, 207, 180-190.	4.4	20
61	Comparative Studies of White-Rot Fungal Strains (<i>Trametes hirsuta</i> MTCC-1171 and) Tj ETQq1 1 0.784314 Ferulic Acid. ACS Omega, 2018, 3, 14858-14868.	4 rgBT /Ov 3.5	verlock 10 T 20
62	Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over Candida antarctica lipase as catalyst in solventâ€free system. Flavour and Fragrance Journal, 2019, 34, 288-293.	2.6	20
63	UDCaT-5: A Novel Mesoporous Superacid Catalyst in the Selective Synthesis of Linear Phenyldodecanes by the Alkylation of Benzene with 1-Dodecene. Industrial & Engineering Chemistry Research, 2009, 48, 10803-10809.	3.7	18
64	n-Butyl levulinate synthesis using lipase catalysis: comparison of batch reactor versus continuous flow packed bed tubular microreactor. Journal of Flow Chemistry, 2018, 8, 97-105.	1.9	18
65	Solvothermal Synthesis of CuFe ₂ O ₄ @rGO: Efficient Catalyst for Câ€O Cross Coupling and <i>Nâ€</i> parylation Reaction under Ligandâ€Free Condition. ChemistrySelect, 2017, 2, 7150-7159.	1.5	16
66	Atom-Efficient Benzoin Condensation in Liquid–Liquid System Using Quaternary Ammonium Salts: Pseudo-Phase Transfer Catalysis. Organic Process Research and Development, 2012, 16, 755-763.	2.7	15
67	Novelty of Claisen–Schmidt condensation of biomass-derived furfural with acetophenone over solid super base catalyst. RSC Advances, 2014, 4, 63772-63778.	3.6	15
68	Cascade engineered synthesis of ethyl benzyl acetoacetate and methyl isobutyl ketone (MIBK) on novel multifunctional catalyst. Journal of Molecular Catalysis A, 2015, 409, 171-182.	4.8	15
69	Process intensification using immobilized enzymes for the development of white biotechnology. Catalysis Science and Technology, 2021, 11, 1994-2020.	4.1	15
70	Synthesis of Hydroquinone Monomethyl Ether from Hydroquinone and Methanol over Heteropolyacids Supported on Clay:Â Kinetics and Mechanism. Industrial & Engineering Chemistry Research, 2005, 44, 7969-7977.	3.7	14
71	Selectivity Engineering of Cation-Exchange Resins over Inorganic Solid Acids in C-Alkylation of Guaiacol with Cyclohexene. Industrial & Engineering Chemistry Research, 2007, 46, 3119-3127.	3.7	14
72	Solventless green synthesis of 4-O-aryloxy carbonates from aryl/alkyl-oxy propanediols and dimethyl carbonate over nano-crystalline alkali promoted alkaline earth metal oxides. Catalysis Science and Technology, 2013, 3, 2668.	4.1	14

#	Article	IF	CITATIONS
73	Microwave Assisted Enzymatic Kinetic Resolution of $(\hat{A}\pm)$ -1-Phenyl-2-propyn-1-ol in Nonaqueous Media. BioMed Research International, 2014, 2014, 1-9.	1.9	14
74	Kinetics and mechanism of regioselective monoacetylation of 3-aryloxy-1,2-propandiols using immobilized Candida antarctica lipase. Journal of Industrial and Engineering Chemistry, 2015, 31, 335-342.	5.8	14
75	Microwave assisted solvent-free synthesis of n -butyl propionate by immobilized lipase as catalyst. Biocatalysis and Agricultural Biotechnology, 2018, 14, 264-269.	3.1	14
76	Selectivity Engineering in One Pot Synthesis of Raspberry Ketone: Crossed Aldol Condensation of ⟨i⟩p⟨ i⟩â€Hydroxybenzaldehyde and Acetone and Hydrogenation over Novel Ni/Znâ€La Mixed Oxide. ChemistrySelect, 2019, 4, 2140-2152.	1.5	14
77	Zinc-electrocatalyzed hydrogenation of furfural in near-neutral electrolytes. Sustainable Energy and Fuels, 2021, 5, 2972-2984.	4.9	14
78	Novelties of Solidâ^'Liquid Phase Transfer Catalysed Synthesis of α-lsopropyl-p-chlorophenyl Acetonitrile from p-Chlorophenyl Acetonitrile. Organic Process Research and Development, 2003, 7, 588-598.	2.7	13
79	Clean esterification of mandelic acid over Cs2.5H0.5PW12O40 supported on acid treated clay. Clean Technologies and Environmental Policy, 2005, 7, 245-251.	4.1	13
80	Atom Economical Green Synthesis of Chloromethyl-1,3-dioxolanes from Epichlorohydrin Using Supported Heteropolyacids. Industrial & Engineering Chemistry Research, 2013, 52, 6129-6137.	3.7	13
81	Synthesis of long alkyl chain ethers through etherification of ethylene glycol with 1-octene using heteropolyacid supported on K-10 clay. Applied Catalysis A: General, 2014, 477, 18-25.	4.3	13
82	Green Synthesis of Vanillyl Mandelic Acid (Sodium Salt) from Guaiacol and Sodium Glyoxylate over Novel Silica Encapsulated Magnesium Hydroxide. ACS Sustainable Chemistry and Engineering, 2016, 4, 1974-1984.	6.7	13
83	Novel Silica-Encapsulated Cu–Al Hydrotalcite Catalyst: Oxidative Decarboxylation of Vanillyl Mandelic Acid to Vanillin in Water at Atmospheric Pressure. Industrial & Engineering Chemistry Research, 2017, 56, 12899-12908.	3.7	13
84	Green Synthesis of Veratraldehyde Using Potassium Promoted Lanthanum–Magnesium Mixed Oxide Catalyst. Organic Process Research and Development, 2017, 21, 1012-1020.	2.7	13
85	Grapheneâ€Oxideâ€Supported SO ₃ Hâ€Functionalized Imidazoliumâ€Based Ionic Liquid: Efficient and Recyclable Heterogeneous Catalyst for Alcoholysis and Aminolysis Reactions. ChemistrySelect, 2018, 3, 4547-4556.	1.5	13
86	Clean synthesis of benzylidenemalononitrile by Knoevenagel condensation of benzaldehyde and malononitrile: effect of combustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts. Journal of Chemical Sciences, 2019, 131, 1.	1.5	13
87	Chemoenzymatic Epoxidation of Limonene Using a Novel Surface-Functionalized Silica Catalyst Derived from Agricultural Waste. ACS Omega, 2020, 5, 22940-22950.	3.5	13
88	Synthesis and Application of Novel NiMoK/TS-1 for Selective Conversion of Fatty Acid Methyl Esters/Triglycerides to Olefins. ACS Omega, 2020, 5, 5061-5071.	3.5	13
89	Selective hydrogenation of 3,4â€dimethoxybenzophenone in liquid phase over Pd/C catalyst in a slurry reactor. Canadian Journal of Chemical Engineering, 2014, 92, 2157-2165.	1.7	12
90	Novelty of iron-exchanged heteropolyacid encapsulated inside ZIF-8 as an active and superior catalyst in the esterification of furfuryl alcohol and acetic acid. Reaction Chemistry and Engineering, 2019, 4, 1790-1802.	3.7	12

#	Article	IF	CITATIONS
91	Bimetallic Cu–Ni Nanometal Supported over Mesocellular Silica Foam As a Novel Catalyst for One-Pot Synthesis of Benzimidazole in DMF As a Bifunctional Reagent. Industrial & Engineering Chemistry Research, 2022, 61, 6909-6924.	3.7	12
92	Selectivity engineering in the O―versus Câ€alkylation of <i>p</i> àâ€cresol with cyclohexene over sulfated zirconia. Canadian Journal of Chemical Engineering, 2000, 78, 917-927.	1.7	11
93	Synergism of Low Energy Microwave Irradiation and Solid–Liquid Phase Transfer Catalysis for Selective Alkylation of Phenols to Phenolic Ethers. Synthetic Communications, 2004, 34, 2885-2892.	2.1	11
94	Dodecatungstophosphoric Acid Supported on Acidic Clay Catalyst for Disproportionation of Ethylbenzene in the Presence of C8 Aromatics. Industrial & Engineering Chemistry Research, 2012, 51, 1209-1217.	3.7	11
95	Selectivity Engineered Friedel–Crafts Acylation of Guaiacol with Vinyl Acetate to Acetovanillone over Cesium-Modified Heteropolyacid Supported on K-10 Clay. Industrial & Engineering Chemistry Research, 2013, 52, 10627-10636.	3.7	11
96	Selective mono-isopropylation of 1,3-propanediol with isopropyl alcohol using heteropoly acid supported on K-10 clay catalyst. Catalysis Today, 2014, 237, 54-61.	4.4	11
97	Sol–gel synthesis and characterization of defect-free alumina films and its application in the preparation of supported ultrafiltration membranes. Journal of Sol-Gel Science and Technology, 2016, 77, 266-277.	2.4	11
98	Activity and selectivity of different base catalysts in synthesis of guaifenesin from guaiacol and glycidol of biomass origin. Catalysis Today, 2017, 291, 213-222.	4.4	11
99	Preparation of amino-functionalized silica supports for immobilization of epoxide hydrolase and cutinase: characterization and applications. Journal of Porous Materials, 2020, 27, 1559-1567.	2.6	10
100	Biobased process intensification in selective synthesis of \hat{I}^3 -butyrolactone from succinic acid via synergistic palladium \hat{a} "copper bimetallic catalyst supported on alumina xerogel. Clean Technologies and Environmental Policy, 2018, 20, 683-693.	4.1	9
101	Ion-Exchange Resin Catalysis in Benign Synthesis of Perfumery Gradep-Cresylphenyl Acetate fromp-Cresol and Phenylacetic Acid. Organic Process Research and Development, 2005, 9, 288-293.	2.7	8
102	Process intensification in methane generation during anaerobic digestion of Napier grass using supercritical carbon dioxide combined with acid hydrolysis preâ€treatment. Canadian Journal of Chemical Engineering, 2014, 92, 2176-2184.	1.7	8
103	Oneâ€pot synthesis of (<i>R</i>)â€1â€(pyridinâ€4â€yl)ethyl acetate using tandem catalyst prepared by coâ€immobilization of palladium and lipase on mesoporous foam: Optimization and kinetic modeling. Chirality, 2017, 29, 811-823.	2.6	8
104	A Green Process for Synthesis of Geraniol Esters by Immobilized Lipase from Candida Antarctica B Fraction in Non-Aqueous Reaction Media: Optimization and Kinetic Modeling. International Journal of Chemical Reactor Engineering, 2018, 16, .	1.1	8
105	Activities of clays and ion exchange resins in the synthesis of phthalate esters. Clean Technologies and Environmental Policy, 2004, 6, 114-119.	4.1	7
106	Converting liability into asset: novel mesoporous zeotype from fly ash using silatrane chemistry. Clean Technologies and Environmental Policy, 2005, 7, 162-167.	4.1	7
107	Exploring the untapped potential of solar pretreatment for deconstruction of recalcitrant Kraft lignin in fungal biotransformation. Clean Technologies and Environmental Policy, 2019, 21, 579-590.	4.1	7
108	Zn- and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method. ACS Omega, 2020, 5, 2088-2096.	3.5	7

#	Article	IF	CITATIONS
109	Esterification of propanoic acid with 1,2-propanediol: catalysis by cesium exchanged heteropoly acid on K-10 clay and kinetic modelling. Reaction Chemistry and Engineering, 2021, 6, 313-320.	3.7	7
110	Friedel-crafts acylation of furan using chromium-exchanged dodecatungstophosphoric acid: effect of support, mechanism and kinetic modelling. Clean Technologies and Environmental Policy, 2021, 23, 2429-2441.	4.1	7
111	Organic-inorganic epoxide hydrolase hybrid nanoflowers with enhanced catalytic activity: Hydrolysis of styrene oxide to 1-phenyl-1,2-ethanediol. Journal of Biotechnology, 2021, 341, 113-120.	3.8	7
112	Direct synthesis of dimethyl ether from CO ₂ hydrogenation over a highly active, selective and stable catalyst containing Cu–ZnO–Al ₂ O ₃ /Al–Zr(1 : 1)-SBA-15. Read Chemistry and Engineering, 2022, 7, 1391-1408.	o Bi.ø n	7
113	Population balance modeling and simulation of liquid–liquid–liquid phase transfer catalyzed synthesis of mandelic acid from benzaldehyde. AICHE Journal, 2012, 58, 3799-3809.	3.6	6
114	Kinetic resolution of (R,S) phenyl glycidyl ether by red mung beans (Vigna angularis) epoxide hydrolases. Biocatalysis and Agricultural Biotechnology, 2017, 12, 260-265.	3.1	6
115	Green synthesis of methyl salicylate using novel sulfated iron oxide–zirconia catalyst. Clean Technologies and Environmental Policy, 2019, 21, 533-545.	4.1	6
116	Valorization of Bio-Oils to Fuels and Chemicals. ACS Symposium Series, 2021, , 29-67.	0.5	6
117	Solvent-Free Benzylation of Glycerol by Benzyl Alcohol Using Heteropoly Acid Impregnated on K-10 Clay as Catalyst. Catalysts, 2021, 11, 34.	3.5	6
118	<scp>Synthesis</scp> of environmentâ€friendly, sustainable, and nontoxic bioâ€lubricants: A critical review of advances and a path forward. Biofuels, Bioproducts and Biorefining, 2022, 16, 1172-1195.	3.7	6
119	Ecofriendly Claisen Rearrangement of Allyl-4-tert-butylphenyl Ether Using Heteropolyacid Supported on Hexagonal Mesoporous Silica. Organic Process Research and Development, 2005, 9, 547-554.	2.7	5
120	Engineering Selectivity in Novel Synthesis of 3-(Phenylmethoxy)phenol from Resorcinol and Benzyl Chloride under Liquid–Liquidâ^'Liquid Phase Transfer Catalysis. Organic Process Research and Development, 2008, 12, 755-764.	2.7	5
121	Liquid–liquid–liquid phase-transfer catalysis for cleaner and selective etherification of p-hydroxy-biphenyl with benzyl chloride to $1,1$ ′-biphenyl-4-(phenylmethoxy). Clean Technologies and Environmental Policy, 2009, $11,163-172$.	4.1	5
122	Atom-Economical Selective-Ring-Opening Reaction of Glycidol with 1-Naphthol Catalyzed by Magnesium Silicate of a Biogenic Silica Source. Industrial & Engineering Chemistry Research, 2015, 54, 10245-10252.	3.7	5
123	Selectivity engineering in hydroxyalkoxylation of phenol by ethylene carbonate using calcined hydrotalcite. Clean Technologies and Environmental Policy, 2017, 19, 1413-1422.	4.1	5
124	Novel alkali-promoted hydrotalcite for selective synthesis of 2-methoxy phenyl benzoate from guaiacol and benzoic anhydride. Clean Technologies and Environmental Policy, 2017, 19, 1169-1180.	4.1	5
125	Superior efficacy of biocomposite membranes of chitosan with montmorillonite and kaolin vs pure chitosan for removal of Cu(II) from wastewater. Journal of Chemical Sciences, 2022, 134, 1.	1.5	5
126	Selectivity engineering in isopropylation of mesitylene with isopropyl alcohol over cesium substituted heteropolyacid supported on K-10 clay. Clean Technologies and Environmental Policy, 2009, 11, 447-457.	4.1	4

#	Article	IF	CITATIONS
127	Novelties of low energy microwave-irradiated tri-liquid phase transfer catalysis (MILLL-PTC): halo-exchange of benzyl chloride with sodium bromide. Clean Technologies and Environmental Policy, 2012, 14, 709-718.	4.1	4
128	Facile synthesis of dicamba ester over heterogeneous magnesium oxide and kinetic modelling. Chemical Engineering Journal, 2017, 309, 663-673.	12.7	4
129	Selectivity engineering in catalysis by ruthenium nanoparticles supported on heteropolyacid-encapsulated MOF-5: one-pot synthesis of allyl 4-cyclohexanebutyrate and kinetic modeling. Emergent Materials, 2020, 3, 965-988.	5.7	4
130	Design of a novel dual function membrane microreactor for liquid–liquid–liquid phase transfer catalysed reaction: selective synthesis of 1-naphthyl glycidyl ether. Reaction Chemistry and Engineering, 2021, 6, 858-867.	3.7	4
131	UDCaTâ€5: A Novel and Efficient Solid Superacid Catalyst for Claisen Rearrangement of Substituted Allyl Phenyl Ethers. Synthetic Communications, 2007, 37, 941-946.	2.1	3
132	Zirconia-Modified Superacid UDCaT-5: An Efficient and Versatile Catalyst for Alkylation Reactions under Solvent-Free Conditions. Synthetic Communications, 2008, 38, 2684-2691.	2.1	3
133	Selective synthesis of 1-(1-naphthyloxy)-2,3-epoxypropane from 1-naphthol and epichlorohydrin under solid–liquid phase transfer catalysis: a waste minimization strategy. Clean Technologies and Environmental Policy, 2017, 19, 1223-1230.	4.1	3
134	Green synthetic route for perfumery compound (2-methoxyethyl) benzene using Li/MgO catalyst. Journal of Chemical Sciences, 2017, 129, 1771-1779.	1.5	3
135	Experimental and Modeling Assessment of Sulfate and Arsenic Removal from Mining Wastewater by Nanofiltration. International Journal of Chemical Reactor Engineering, 2018, 16, .	1.1	3
136	Novelties of Solidâ^'Liquid Phase Transfer Catalyzed Synthesis of Triclosan from Potassium 2,4-Dichlorophenolate and 2,5-Dichlorophenol. Industrial & Engineering Chemistry Research, 2008, 47, 9055-9060.	3.7	2
137	Novelty of <i>Penicillium camembertii</i> Lipase Supported on Glutaraldehyde Activated-SBA-15 Mesoporous Silica for Mono-Esterification of Bioglycerol in Non-Aqueous Media. International Journal of Chemical Reactor Engineering, 2016, 14, 919-928.	1.1	2
138	Synthesis of novel titania membrane support via combustion synthesis route and its application in decolorization of aqueous effluent using microfiltration. Clean Technologies and Environmental Policy, 2016, 18, 139-149.	4.1	2
139	Insight into solid-liquid phase transfer catalyzed synthesis of Mecoprop ester using \$\$hbox {K}_{2}hbox {CO}_{3}\$\$ K 2 CO 3 as base and development of new kinetic model involving liquid product and two solid co-products. Journal of Chemical Sciences, 2017, 129, 1677-1685.	1.5	2
140	K–La–MgO as heterogeneous catalyst for synthesis of 3-(2-hydroxyethyl)-1,3-oxazolidin-2-one from diethanol amine and carbon dioxide. Clean Technologies and Environmental Policy, 2018, 20, 1875-1888.	4.1	2
141	Green Chemistry in India. Clean Technologies and Environmental Policy, 2006, 8, 219-223.	4.1	1
142	A Green Process for Selective Hydrolysis of Cinnamaldehyde in Water to Natural Benzaldehyde by Using Ti and Zn Modified Hydrotalcites as Catalysts. Current Green Chemistry, 2019, 6, 242-254.	1.1	1
143	Enhancing Activity by Supercritical CO2 Mediated Immobilization of Lipase on Mesocellular Foam in Preparation of Hexyl Laurate. Applied Biochemistry and Biotechnology, 2020, 190, 686-702.	2.9	1
144	Continuous Synthesis and Separation of <i>p</i> -Bromobenzyl Bromide Using Atom-Efficient Bromination of <ip< i="">-Bromotoluene without Any Organic Effluent: Potential for Green Industrial Practice. Organic Process Research and Development, 2021, 25, 2071-2080.</ip<>	2.7	1

#	Article	IF	CITATIONS
145	Insight into Acetylation of Anisyl Alcohol Using 20% (w/w) Cs2.5H0.5 PW12O40 Supported on Mesocelllular Foam (MCF) Silica. Current Catalysis, 2018, 7, 176-184.	0.5	1
146	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2007, 11, 928-939.	2.7	0
147	Catalysis for sustainable development. Clean Technologies and Environmental Policy, 2018, 20, 681-682.	4.1	O
148	A novel single-step hydrogenation of 2-imidazolecarboxaldehyde to 2-methylimidazole over Pd-impregnated Al–Ti mixed oxide and kinetics. Reaction Chemistry and Engineering, 2020, 5, 1461-1473.	3.7	0
149	Synthesis of Unsaturated Drying Oils from Saturated Fatty Oils Derived from Renewable Feedstocks. Industrial & Engineering Chemistry Research, 2020, 59, 8911-8920.	3.7	0