Raul De la Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2755329/publications.pdf

Version: 2024-02-01

120 papers

3,822 citations

34 h-index 56 g-index

120 all docs

120 docs citations

120 times ranked

2954 citing authors

#	Article	IF	CITATIONS
1	High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sensing, 2015, 7, 4213-4232.	1.8	263
2	Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs,) Tj ETQq0 0 0	rgBT/Over	lock 10 Tf 50
3	Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Molecular Ecology Notes, 2002, 2, 265-267.	1.7	224
4	Determination of phenolic compounds of â€~Sikitita' olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents â€~Arbequina' and â€~Picual' olive leaves. LWT - Food Science and Technology, 2014, 58, 28-3	4. ^{2.5}	134
5	A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theoretical and Applied Genetics, 2003, 106, 1273-1282.	1.8	133
6	Polymorphism and Discrimination Capacity of Randomly Amplified Polymorphic Markers in an Olive Germplasm Bank. Journal of the American Society for Horticultural Science, 2001, 126, 64-71.	0.5	130
7	Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Scientia Horticulturae, 2011, 129, 561-569.	1.7	85
8	De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome. DNA Research, 2013, 20, 93-108.	1.5	84
9	â€ ⁻ Chiquititaâ€ [™] Olive. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 529-531.	0.5	77
10	The Length of the Juvenile Period in Olive as Influenced by Vigor of the Seedlings and the Precocity of the Parents. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1213-1215.	0.5	70
11	From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions. International Journal of Molecular Sciences, 2016, 17, 337.	1.8	66
12	Changes in squalene and sterols associated with olive maturation. Food Research International, 2013, 54, 1885-1889.	2.9	64
13	Development, characterization and inheritance of new microsatellites in olive (Olea europaea L.) and evaluation of their usefulness in cultivar identification and genetic relationship studies. Tree Genetics and Genomes, 2006, 2, 165-175.	0.6	63
14	Chemometric Analysis for the Evaluation of Phenolic Patterns in Olive Leaves from Six Cultivars at Different Growth Stages. Journal of Agricultural and Food Chemistry, 2015, 63, 1722-1729.	2.4	58
15	Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management. Frontiers in Plant Science, 2018, 9, 1320.	1.7	57
16	Fatty acid composition of advanced olive selections obtained by crossbreeding. Journal of the Science of Food and Agriculture, 2008, 88, 1921-1926.	1.7	56
17	Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. International Journal of Climatology, 2017, 37, 940-957.	1.5	56

Transposon activation is a major driver in the genome evolution of cultivated olive trees (<i > Olea) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 54

18

#	Article	IF	CITATIONS
19	High-Throughput Sequencing of RNA Silencing-Associated Small RNAs in Olive (Olea europaea L.). PLoS ONE, 2011, 6, e27916.	1.1	52
20	Preliminary results of an olive cultivar trial at high density. Australian Journal of Agricultural Research, 2007, 58, 392.	1.5	51
21	Using Microsatellites for Paternity Testing in Olive Progenies. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 351-354.	0.5	51
22	Breeding for Early Bearing in Olive. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 499-502.	0.5	50
23	Development of SCAR markers in olive (Olea europaea) by direct sequencing of RAPD products: applications in olive germplasm evaluation and mapping. Theoretical and Applied Genetics, 2001, 103, 788-791.	1.8	48
24	Seedling vigour as a preselection criterion for short juvenile period in olive breeding. Australian Journal of Agricultural Research, 2006, 57, 477.	1.5	48
25	Oil composition of advanced selections from an olive breeding program. European Journal of Lipid Science and Technology, 2011, 113, 870-875.	1.0	47
26	Variability of Virgin Olive Oil Phenolic Compounds in a Segregating Progeny from a Single Cross in Olea europaea L. and Sensory and Nutritional Quality Implications. PLoS ONE, 2014, 9, e92898.	1.1	44
27	Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management, 2018, 204, 247-261.	2.4	44
28	Utility of wild germplasm in olive breeding. Scientia Horticulturae, 2013, 152, 92-101.	1.7	43
29	Fruit characteristics and fatty acid composition in advanced olive breeding selections along the ripening period. Food Research International, 2013, 54, 1890-1896.	2.9	40
30	Early selection for oil quality components in olive breeding progenies. European Journal of Lipid Science and Technology, 2016, 118, 1160-1167.	1.0	38
31	Plasticity of fruit and oil traits in olive among different environments. Scientific Reports, 2019, 9, 16968.	1.6	38
32	Development of EST-derived SSR Markers with Long-core Repeat in Olive and Their Use for Paternity Testing. Journal of the American Society for Horticultural Science, 2013, 138, 290-296.	0.5	38
33	Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Scientia Horticulturae, 2012, 136, 50-60.	1.7	37
34	Olive Floral Bud Growth and Starch Content During Winter Rest and Spring Budbreak. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1223-1227.	0.5	37
35	Pattern of Variation of Fruit Traits and Phenol Content in Olive Fruits from Six Different Cultivars. Journal of Agricultural and Food Chemistry, 2015, 63, 10466-10476.	2.4	36
36	Influence of spacing on the initial production of hedgerow †Arbequina†olive orchards. Spanish Journal of Agricultural Research, 2007, 5, 554.	0.3	35

#	Article	IF	Citations
37	Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition. Frontiers in Plant Science, 2018, 9, 232.	1.7	33
38	Pre-breeding for resistance to Verticillium wilt in olive: Fishing in the wild relative gene pool. Crop Protection, 2015, 75, 25-33.	1.0	32
39	Use of DArT markers as a means of better management of the diversity of olive cultivars. Food Research International, 2013, 54, 2045-2053.	2.9	31
40	Identification of QTL for agronomic traits of importance for olive breeding. Molecular Breeding, 2014, 34, 725.	1.0	31
41	Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of PicualA—Arbequina cultivars. Journal of Chromatography A, 2016, 1428, 305-315.	1.8	31
42	Cross-compatibility of the Parents as the Main Factor for Successful Olive Breeding Crosses. Journal of the American Society for Horticultural Science, 2007, 132, 830-835.	0.5	31
43	First evidence of a retrotransposon-like element in olive (Olea europaea): implications in plant variety identification by SCAR-marker development. Theoretical and Applied Genetics, 2001, 102, 1082-1087.	1.8	30
44	Resistance to Verticillium wilt in olive progenies from open-pollination. Scientia Horticulturae, 2015, 185, 34-42.	1.7	29
45	Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs. Frontiers in Plant Science, 2018, 9, 241.	1.7	29
46	Ripening time and fruit characteristics of advanced olive selections for oil production. Australian Journal of Agricultural Research, 2008, 59, 46.	1.5	27
47	Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant Physiology and Biochemistry, 2019, 139, 485-494.	2.8	26
48	Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture. Frontiers in Plant Science, 2016, 7, 240.	1.7	25
49	Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics and Genomes, 2010, 6, 891-903.	0.6	24
50	Characterisation and identification of olive cultivars from North-eastern Algeria using molecular markers. Journal of Horticultural Science and Biotechnology, 2012, 87, 95-100.	0.9	24
51	Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees - Structure and Function, 2009, 23, 181-187.	0.9	22
52	Olive seedling first-flowering position and management. Scientia Horticulturae, 2010, 124, 74-77.	1.7	22
53	Evaluation of Verticillium wilt resistance in selections from olive breeding crosses. Euphytica, 2015, 206, 619-629.	0.6	22
54	Analysis of Olive (Olea Europaea L.) Genetic Resources in Relation to the Content of Vitamin E in Virgin Olive Oil. Antioxidants, 2019, 8, 242.	2.2	21

#	Article	IF	Citations
55	Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica, 2019, 215, 1.	0.6	21
56	GC-QTOF-MS as valuable tool to evaluate the influence of cultivar and sample time on olive leaves triterpenic components. Food Research International, 2019, 115, 219-226.	2.9	21
57	Chemical components influencing oxidative stability and sensorial properties of extra virgin olive oil and effect of genotype and location on their expression. LWT - Food Science and Technology, 2021, 136, 110257.	2.5	21
58	Selection for Some Olive Oil Quality Components Through the Analysis of Fruit Flesh. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1731-1736.	0.8	20
59	Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genetics and Genomes, 2014, 10, 585.	0.6	20
60	Genotype by environment interaction for oil quality components in olive tree. European Journal of Agronomy, 2020, 119, 126115.	1.9	20
61	Utility of EST-SNP Markers for Improving Management and Use of Olive Genetic Resources: A Case Study at the Worldwide Olive Germplasm Bank of $C\tilde{A}^3$ rdoba. Plants, 2022, 11, 921.	1.6	20
62	Agronomic evaluation of seedlings from crosses between the main Spanish olive cultivar â€ [™] and two wild olive trees. Journal of Horticultural Science and Biotechnology, 2014, 89, 508-512.	0.9	19
63	Differences on flowering phenology under Mediterranean and Subtropical environments for two representative olive cultivars. Environmental and Experimental Botany, 2020, 180, 104239.	2.0	18
64	High-throughput analysis of the canopy traits in the worldwide olive germplasm bank of Córdoba using very high-resolution imagery acquired from unmanned aerial vehicle (UAV). Scientia Horticulturae, 2021, 278, 109851.	1.7	18
65	High Susceptibility of Olive Cultivar FS-17 to <i>Alternaria alternata</i> in Southern Spain. Plant Disease, 2008, 92, 1252-1252.	0.7	18
66	Early growth habit and vigour parameters in olive seedlings. Scientia Horticulturae, 2011, 129, 761-768.	1.7	17
67	Relative Susceptibility of New Olive Cultivars to <i>Spilocaea oleagina, Colletotrichum acutatum</i> , and <i>Pseudocercospora cladosporioides</i> . Plant Disease, 2015, 99, 58-64.	0.7	17
68	Variability and heritability of fruit characters in olive progenies from open-pollination. Scientia Horticulturae, 2014, 169, 94-98.	1.7	16
69	Initial selection steps in olive breeding programs. Euphytica, 2015, 201, 453-462.	0.6	16
70	Mapping quantitative trait loci controlling fatty acid composition in olive. Euphytica, 2017, 213, 1.	0.6	16
71	A survey of ethanol content in virgin olive oil. Food Control, 2018, 91, 248-253.	2.8	16
72	Selections of an Olive Breeding Program Identified by Microsatellite Markers. Crop Science, 2007, 47, 2317-2322.	0.8	15

#	Article	IF	Citations
73	Reliable and relevant qualitative descriptors for evaluating complex architectural traits in olive progenies. Scientia Horticulturae, 2012, 143, 157-166.	1.7	15
74	CURRENT STATUS OF CONSERVATION, EVALUATION AND USEFULNESS OF WILD OLIVE GERMPLASM. Acta Horticulturae, 2014, , 515-519.	0.1	15
75	Pollen-mediated gene flow and fine-scale spatial genetic structure in <i>Olea europaea</i> subsp. <i>europaea</i> subsp. <i>europaea</i> sylvestris. Annals of Botany, 2017, 119, mcw246.	1.4	15
76	Optimal spatial and temporal replications for reducing environmental variation for oil content components and fruit morphology traits in olive breeding. Euphytica, 2016, 207, 675-684.	0.6	15
77	EST–SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes, 2020, 11, 916.	1.0	15
78	Phenological diversity in a World Olive Germplasm Bank: Potential use for breeding programs and climate change studies. Spanish Journal of Agricultural Research, 2020, 18, e0701.	0.3	15
79	Microsatellite marker-based identification of mother plants for the reliable propagation of olive (<i>Olea europaea</i> L.) cultivars in Australia. Journal of Horticultural Science and Biotechnology, 2012, 87, 647-653.	0.9	14
80	Floral quality components of a new olive cultivar and its parents. Scientia Horticulturae, 2013, 154, 17-19.	1.7	13
81	Role of partial resistance to Puccinia hordei in barley in the defence of barley to inappropriate rust fungi. Physiological and Molecular Plant Pathology, 1994, 45, 219-228.	1.3	12
82	Female genitor effect on the juvenile period of olive seedlings. Scientia Horticulturae, 2013, 156, 99-105.	1.7	11
83	Verticillium wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. BMC Genomics, 2021, 22, 229.	1.2	11
84	Verticillium Wilt Evaluation of Olive Breeding Selections Under Semi-Controlled Conditions. Plant Disease, 2021, 105, 1781-1790.	0.7	11
85	Plasticity in Vegetative Growth over Contrasted Growing Sites of an F1 Olive Tree Progeny during Its Juvenile Phase. PLoS ONE, 2015, 10, e0127539.	1.1	11
86	Selection for fruit removal force and related characteristics in olive breeding progenies. Australian Journal of Experimental Agriculture, 2005, 45, 1643.	1.0	10
87	Pigment Metabolism of â€~Sikitita' Olive (Olea europaea L.): A New Cultivar Obtained by Cross-Breeding. Journal of Agricultural and Food Chemistry, 2011, 59, 2049-2055.	2.4	10
88	Evaluation of the Phytopathological Reaction of Wild and Cultivated Olives as a Means of Finding Promising New Sources of Genetic Diversity for Resistance to Root-Knot Nematodes. Plant Disease, 2019, 103, 2559-2568.	0.7	9
89	New olive cultivars and selections in Spain: results after 25 years of breeding. Acta Horticulturae, 2018, , 21-26.	0.1	8
90	Quantification of dwarfing effect of different rootstocks in â€~Picual' olive cultivar using UAV-photogrammetry. Precision Agriculture, 2022, 23, 178-193.	3.1	8

#	Article	IF	CITATIONS
91	Optimizing Early Flowering and Pre-selection for Short Juvenile Period in Olive Seedlings. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 519-522.	0.5	8
92	Transcriptional analysis of adult cutting and juvenile seedling olive roots. Tree Genetics and Genomes, $2015,11,1.$	0.6	7
93	Advanced olive selections with enhanced quality for minor constituents. Grasas Y Aceites, 2015, 66, e100.	0.3	7
94	Evaluation of early vigor traits in wild olive germplasm. Scientia Horticulturae, 2020, 264, 109157.	1.7	6
95	Enhancing the sustainability of Mediterranean olive groves through adaptation measures to climate change using modelling and response surfaces. Agricultural and Forest Meteorology, 2022, 313, 108742.	1.9	6
96	Genetic and Environmental Effect on Volatile Composition of Extra Virgin Olive Oil. European Journal of Lipid Science and Technology, 2020, 122, 2000162.	1.0	5
97	A new approach for early selection of short juvenile period in olive progenies. Scientia Horticulturae, 2021, 281, 109993.	1.7	5
98	Prioritization of olive breeding objectives in Spain: Analysis of a producers and researchers survey. Spanish Journal of Agricultural Research, 2021, 19, e0701.	0.3	5
99	Phenolic variability in fruit from the â€~Arbequina' olive cultivar under Mediterranean and Subtropical climatic conditions. Grasas Y Aceites, 2021, 72, e438.	0.3	5
100	Seedling Selection in Olive Breeding Progenies. Plants, 2022, 11, 1195.	1.6	5
101	MOLECULAR MARKERS IN OLIVE: AN INTEGRATED APPROACH. Acta Horticulturae, 2008, , 45-48.	0.1	4
102	Flowering phenology and flower quality of cultivars â€~Arbequina', â€~Koroneiki' and â€~Picual' in diffe environments of southern Spain. Acta Horticulturae, 2018, , 257-262.	erent 0.1	4
103	INTER-COMPATIBILITY RELATIONSHIPS IN OLIVE AS REVEALED BY PATERNITY TESTS WITH SSR MARKERS. Acta Horticulturae, 2009, , 659-662.	0.1	3
104	EARLINESS OF BEARING IN OLIVE PROGENIES. Acta Horticulturae, 2011, , 341-347.	0.1	3
105	Tree crown parameters assessment using 3D photo reconstruction as a tool for selection in olive breeding programs. Acta Horticulturae, 2017, , 1-4.	0.1	3
106	Genetic Mapping and Detection of Quantitative Trait Loci. Compendium of Plant Genomes, 2016, , 65-74.	0.3	3
107	A gene for susceptibility to the fungicide azoxystrobin in apple and a tightly linked microsatellite marker. Plant Breeding, 2009, 128, 312-316.	1.0	2
108	ADVANCES IN THE JOINT UCO-IFAPA OLIVE BREEDING PROGRAM (JOBP). Acta Horticulturae, 2011, , 283-290.	0.1	2

#	Article	IF	CITATIONS
109	OVERCOMING JUVENILITY IN AN OLIVE BREEDING PROGRAM. Acta Horticulturae, 2012, , 221-226.	0.1	2
110	FRUIT AND OIL CHARACTERISTICS OF ADVANCED SELECTIONS FROM AN OLIVE BREEDING PROGRAM. Acta Horticulturae, 2013, , 415-419.	0.1	2
111	May Soil Solarization Reduce the Juvenile Period in Olive?. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1241-1244.	0.5	2
112	VEGETATIVE GROWTH HABIT AND EARLINESS OF BEARING OF DIFFERENT OLIVE CULTIVARS. Acta Horticulturae, 2014, , 411-416.	0.1	1
113	SCREENING OF WILD OLIVES FOR VERTICILLIUM WILT RESISTANCE. Acta Horticulturae, 2014, , 559-563.	0.1	1
114	MORPHOLOGICAL AND HISTOLOGICAL CHARACTERISTICS RELATED WITH PHASE CHANGE (JUVENILE/ADULT) IN OLIVE LEAVES AND ITS DETERMINATION BY NEAR INFRARED REFLECTANCE SPECTROSCOPY. Acta Horticulturae, 2009, , 449-452.	0.1	1
115	Floral Quality Characterization in Olive Progenies from Reciprocal Crosses. Plants, 2022, 11, 1285.	1.6	1
116	INFLUENCE OF HARVEST DATE ON THE GERMINATION AND EMERGENCY OF SEEDS OF FIVE OLIVE CULTIVARS. Acta Horticulturae, 2008, , $187-189$.	0.1	0
117	SEEDLING HEIGHT AS A PRE-SELECTION CRITERION FOR SHORT JUVENILE PERIOD IN OLIVE SEEDLINGS. Acta Horticulturae, 2008, , 61-64.	0.1	0
118	Assessment of olive diversity for metabolites associated with the nutritional and sensory quality of virgin olive oil. Acta Horticulturae, 2018, , 517-522.	0.1	0
119	CULTIVAR IDENTIFICATION AND ELUCIDATION OF GENETIC RELATIONSHIPS WITHIN THE SPECIES OLEA EUROPAEA L. USING MICROSATELLITES. Acta Horticulturae, 2008, , 79-86.	0.1	0
120	DEVELOPMENT AND CHARACTERIZATION OF 12 NEW MICROSATELLITES IN OLIVE (OLEA EUROPAEA L.). Acta Horticulturae, 2008, , 87-93.	0.1	0