## Ronghui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2755320/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable<br>Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Applied Materials & Interfaces,<br>2020, 12, 6442-6450.                   | 4.0  | 302       |
| 2  | Fullâ€Textile Wireless Flexible Humidity Sensor for Human Physiological Monitoring. Advanced<br>Functional Materials, 2019, 29, 1904549.                                                                                                | 7.8  | 193       |
| 3  | Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature–Pressure<br>Sensing. Small, 2019, 15, e1901558.                                                                                                  | 5.2  | 184       |
| 4  | A Biodegradable and Stretchable Proteinâ€Based Sensor as Artificial Electronic Skin for Human Motion<br>Detection. Small, 2019, 15, e1805084.                                                                                           | 5.2  | 143       |
| 5  | A Machineâ€Fabricated 3D Honeycomb‣tructured Flameâ€Retardant Triboelectric Fabric for Fire Escape<br>and Rescue. Advanced Materials, 2020, 32, e2003897.                                                                               | 11.1 | 136       |
| 6  | In situ growth of CuS and Cu <sub>1.8</sub> S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 9595-9600.                                            | 5.2  | 132       |
| 7  | Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy<br>Harvesting and Signal Sensing. ACS Nano, 2020, 14, 4716-4726.                                                                            | 7.3  | 130       |
| 8  | Lightâ€Driven Sustainable Hydrogen Production Utilizing TiO <sub>2</sub> Nanostructures: A Review.<br>Small Methods, 2019, 3, 1800184.                                                                                                  | 4.6  | 118       |
| 9  | Recent Development of Transparent Conducting Oxideâ€Free Flexible Thinâ€Film Solar Cells. Advanced<br>Functional Materials, 2016, 26, 8855-8884.                                                                                        | 7.8  | 82        |
| 10 | All-Textile Electronic Skin Enabled by Highly Elastic Spacer Fabric and Conductive Fibers. ACS Applied<br>Materials & Interfaces, 2019, 11, 33336-33346.                                                                                | 4.0  | 81        |
| 11 | Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. Journal of Materials Chemistry A, 2020, 8, 12665-12673.                                                                       | 5.2  | 68        |
| 12 | Acid and Alkaliâ€Resistant Textile Triboelectric Nanogenerator as a Smart Protective Suit for Liquid<br>Energy Harvesting and Selfâ€Powered Monitoring in Highâ€Risk Environments. Advanced Functional<br>Materials, 2021, 31, 2102963. | 7.8  | 63        |
| 13 | Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosensors and Bioelectronics, 2020, 169, 112567.                                                             | 5.3  | 57        |
| 14 | From Molecular Reconstruction of Mesoscopic Functional Conductive Silk Fibrous Materials to Remote Respiration Monitoring. Small, 2020, 16, e2000203.                                                                                   | 5.2  | 48        |
| 15 | New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible<br>Mesoâ€Electronics/Photonics Based on Cocoon Silk Materials. Advanced Materials, 2021, 33, e2005910.                                                      | 11.1 | 45        |
| 16 | Stretchable, Stable, and Degradable Silk Fibroin Enabled by Mesoscopic Doping for Finger Motion<br>Triggered Color/Transmittance Adjustment. ACS Nano, 2021, 15, 12429-12437.                                                           | 7.3  | 42        |
| 17 | Pulsed electrochemical deposition of porous WO <sub>3</sub> on silver networks for highly flexible electrochromic devices. Journal of Materials Chemistry C, 2019, 7, 1966-1973.                                                        | 2.7  | 40        |
| 18 | From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Advanced Science, 2022, 9, e2103981.                                                                                    | 5.6  | 40        |

Ronghui Wu

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Skinâ€Like Pressure―and Vibrationâ€Sensitive Tactile Sensor Based on Polyacrylamide/Silk Fibroin<br>Elastomer. Advanced Functional Materials, 2022, 32, .                                       | 7.8  | 39        |
| 20 | Biomimetic Salinity Power Generation Based on Silk Fibroin Ion-Exchange Membranes. ACS Nano, 2021, 15, 5649-5660.                                                                                 | 7.3  | 36        |
| 21 | Smart electrochromic supercapacitors based on highly stable transparent conductive graphene/CuS<br>network electrodes. RSC Advances, 2017, 7, 29088-29095.                                        | 1.7  | 35        |
| 22 | Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells. Nanoscale, 2017, 9, 3826-3833.                                                           | 2.8  | 33        |
| 23 | Industrial Fabrication of 3D Braided Stretchable Hierarchical Interlocked Fancy‥arn Triboelectric<br>Nanogenerator for Selfâ€Powered Smart Fitness System. Advanced Energy Materials, 2022, 12, . | 10.2 | 31        |
| 24 | Ultraflexible, stretchable and fast-switching electrochromic devices with enhanced cycling stability.<br>RSC Advances, 2018, 8, 18690-18697.                                                      | 1.7  | 30        |
| 25 | Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. Lab on A Chip, 2021, 21, 1217-1240.                                             | 3.1  | 30        |
| 26 | Silk Fibroin Based Conductive Film for Multifunctional Sensing and Energy Harvesting. Advanced Fiber<br>Materials, 2022, 4, 885-893.                                                              | 7.9  | 30        |
| 27 | Full-Fiber Auxetic-Interlaced Yarn Sensor for Sign-Language Translation Glove Assisted by Artificial<br>Neural Network. Nano-Micro Letters, 2022, 14, .                                           | 14.4 | 28        |
| 28 | A facile method to prepare a wearable pressure sensor based on fabric electrodes for human motion monitoring. Textile Reseach Journal, 2019, 89, 5144-5152.                                       | 1.1  | 26        |
| 29 | Transparent conducting oxide- and Pt-free flexible photo-rechargeable electric energy storage systems. RSC Advances, 2017, 7, 52988-52994.                                                        | 1.7  | 23        |
| 30 | Free-Standing, Flexible Carbon@MXene Films with Cross-Linked Mesoporous Structures toward<br>Supercapacitors and Pressure Sensors. ACS Applied Materials & Interfaces, 2021, 13, 57576-57587.     | 4.0  | 23        |
| 31 | Controllable and large-scale fabrication of flexible ITO-free electrochromic devices by crackle pattern technology. Journal of Materials Chemistry A, 2018, 6, 19584-19589.                       | 5.2  | 22        |
| 32 | An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosensors and Bioelectronics, 2019, 142, 111595.        | 5.3  | 20        |
| 33 | Tailoring the Meso-Structure of Gold Nanoparticles in Keratin-Based Activated Carbon Toward<br>High-Performance Flexible Sensor. Nano-Micro Letters, 2020, 12, 117.                               | 14.4 | 20        |
| 34 | Spider-inspired regenerated silk fibroin fiber actuator via microfluidic spinning. Chemical Engineering<br>Journal, 2022, 444, 136556.                                                            | 6.6  | 20        |
| 35 | Array Integration and Farâ€Field Detection of Biocompatible Wireless LC Pressure Sensors. Small Methods, 2021, 5, e2001055.                                                                       | 4.6  | 18        |
| 36 | All-in-one fibrous capacitive humidity sensor for human breath monitoring. Textile Reseach Journal, 2021, 91, 398-405.                                                                            | 1.1  | 16        |

Ronghui Wu

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Flexible and disposable gold nanoparticles-N-doped carbon-modified electrochemical sensor for simultaneous detection of dopamine and uric acid. Nanotechnology, 2021, 32, 065502.               | 1.3 | 15        |
| 38 | Programing Performance of Silk Fibroin Superstrong Scaffolds by Mesoscopic Regulation among<br>Hierarchical Structures. Biomacromolecules, 2020, 21, 4169-4179.                                 | 2.6 | 14        |
| 39 | Reconstructed silk fibroin mediated smart wristband for physiological signal detection. Chemical<br>Engineering Journal, 2022, 428, 132362.                                                     | 6.6 | 14        |
| 40 | A capacitive humidity sensor based on all-protein embedded with gold nanoparticles @ carbon composite for human respiration detection. Nanotechnology, 2021, 32, 19LT01.                        | 1.3 | 12        |
| 41 | Chemical Decoration of Perovskites by Nickel Oxide Doping for Efficient and Stable Perovskite Solar<br>Cells. ACS Applied Materials & Interfaces, 2018, 10, 36841-36850.                        | 4.0 | 11        |
| 42 | Wearable hydration and pH sensor based on protein film for healthcare monitoring. Chemical Papers, 2021, 75, 4927.                                                                              | 1.0 | 10        |
| 43 | 3D Upper Body Reconstruction with Sparse Soft Sensors. Soft Robotics, 2021, 8, 226-239.                                                                                                         | 4.6 | 9         |
| 44 | A Novel Facile and Green Synthesis Protocol to Prepare High Strength Regenerated Silk Fibroin/SiO2<br>Composite Fiber. Fibers and Polymers, 2019, 20, 2222-2226.                                | 1.1 | 8         |
| 45 | Direct Single-Step Printing of Conductive Grids on Curved Surfaces Using Template-Guided Foaming.<br>ACS Applied Materials & Interfaces, 2021, 13, 19168-19175.                                 | 4.0 | 8         |
| 46 | Hydrogen Production: Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures:<br>A Review (Small Methods 1/2019). Small Methods, 2019, 3, 1800053.                           | 4.6 | 7         |
| 47 | Robust Elbow Angle Prediction With Aging Soft Sensors via Output-Level Domain Adaptation. IEEE<br>Sensors Journal, 2021, 21, 22976-22984.                                                       | 2.4 | 4         |
| 48 | Enhanced mechanical performance of biocompatible silk fibroin films through mesoscopic construction of hierarchical structures. Textile Reseach Journal, 2021, 91, 1146-1154.                   | 1.1 | 3         |
| 49 | Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable<br>electrochemical solid-state pH sensor. Chinese Physics B, 2022, 31, 028201.                  | 0.7 | 3         |
| 50 | Solar Cells: Recent Development of Transparent Conducting Oxide-Free Flexible Thin-Film Solar Cells<br>(Adv. Funct. Mater. 48/2016). Advanced Functional Materials, 2016, 26, 8854-8854.        | 7.8 | 2         |
| 51 | Data analysis between controllable variables and the performance of CuS crackle based electrode.<br>Data in Brief, 2018, 17, 1331-1335.                                                         | 0.5 | 1         |
| 52 | Respiration Monitoring: From Molecular Reconstruction of Mesoscopic Functional Conductive Silk<br>Fibrous Materials to Remote Respiration Monitoring (Small 26/2020). Small, 2020, 16, 2070147. | 5.2 | 1         |
| 53 | Metal nanoparticles: ligand free approach towards coupling reactions. Current Chinese Science, 2021, 01, .                                                                                      | 0.2 | 0         |