Christiane A Opitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/275489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011, 478, 197-203.	13.7	1,514
2	Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nature Reviews Drug Discovery, 2019, 18, 379-401.	21.5	805
3	Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts. Circulation Research, 2004, 95, 708-716.	2.0	300
4	lsoform Diversity of Giant Proteins in Relation to Passive and Active Contractile Properties of Rabbit Skeletal Muscles. Journal of General Physiology, 2005, 126, 461-480.	0.9	284
5	Toll-Like Receptor Engagement Enhances the Immunosuppressive Properties of Human Bone Marrow-Derived Mesenchymal Stem Cells by Inducing Indoleamine-2,3-dioxygenase-1 via Interferon-β and Protein Kinase R Â. Stem Cells, 2009, 27, 909-919.	1.4	268
6	IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell, 2020, 182, 1252-1270.e34.	13.5	259
7	Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget, 2014, 5, 1038-1051.	0.8	248
8	Developmentally Regulated Switching of Titin Size Alters Myofibrillar Stiffness in the Perinatal Heart. Circulation Research, 2004, 94, 967-975.	2.0	177
9	Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. Journal of Muscle Research and Cell Motility, 2003, 24, 175-189.	0.9	167
10	The therapeutic potential of targeting tryptophan catabolism in cancer. British Journal of Cancer, 2020, 122, 30-44.	2.9	159
11	The Endogenous Tryptophan Metabolite and NAD+ Precursor Quinolinic Acid Confers Resistance of Gliomas to Oxidative Stress. Cancer Research, 2013, 73, 3225-3234.	0.4	126
12	The Indoleamine-2,3-Dioxygenase (IDO) Inhibitor 1-Methyl-D-tryptophan Upregulates IDO1 in Human Cancer Cells. PLoS ONE, 2011, 6, e19823.	1.1	126
13	Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nature Communications, 2020, 11, 931.	5.8	112
14	Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12688-12693.	3.3	105
15	Tryptophan degradation in autoimmune diseases. Cellular and Molecular Life Sciences, 2007, 64, 2542-2563.	2.4	95
16	Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. Journal of Neuroimmunology, 2013, 265, 106-116.	1.1	81
17	Molecular differences in IDH wildtype glioblastoma according to MGMT promoter methylation. Neuro-Oncology, 2018, 20, 367-379.	0.6	79
18	Pirfenidone inhibits TGF-β expression in malignant glioma cells. Biochemical and Biophysical Research Communications, 2007, 354, 542-547.	1.0	72

CHRISTIANE A OPITZ

#	Article	IF	CITATIONS
19	Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology. Nature Communications, 2019, 10, 4877.	5.8	69
20	G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell, 2021, 184, 655-674.e27.	13.5	65
21	Upregulation of tryptophanyl-tRNA synthethase adapts human cancer cells to nutritional stress caused by tryptophan degradation. Oncolmmunology, 2018, 7, e1486353.	2.1	62
22	Tryptophan-2,3-Dioxygenase (TDO) deficiency is associated with subclinical neuroprotection in a mouse model of multiple sclerosis. Scientific Reports, 2017, 7, 41271.	1.6	53
23	Microenvironmental Clues for Glioma Immunotherapy. Current Neurology and Neuroscience Reports, 2014, 14, 440.	2.0	51
24	Suppression of TDO-mediated tryptophan catabolism in glioblastoma cells by a steroid-responsive FKBP52-dependent pathway. Glia, 2015, 63, 78-90.	2.5	51
25	The stress kinase GCN2 does not mediate suppression of antitumor T cell responses by tryptophan catabolism in experimental melanomas. Oncolmmunology, 2016, 5, e1240858.	2.1	51
26	Mouse Mesenchymal Stem Cells Suppress Antigen-Specific TH Cell Immunity Independent of Indoleamine 2,3-Dioxygenase 1 (IDO1). Stem Cells and Development, 2010, 19, 657-668.	1.1	49
27	The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Science Alliance, 2019, 2, e201800257.	1.3	49
28	Tryptophanâ€2,3â€dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptorâ€4. Journal of Neurochemistry, 2016, 136, 1142-1154.	2.1	48
29	Dynamics of NAD-metabolism: everything but constant. Biochemical Society Transactions, 2015, 43, 1127-1132.	1.6	45
30	Protein kinase Cl̂² as a therapeutic target stabilizing blood–brain barrier disruption in experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14735-14740.	3.3	43
31	Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochemical Pharmacology, 2011, 82, 632-641.	2.0	41
32	Fourier Transform Infrared Microscopy Enables Guidance of Automated Mass Spectrometry Imaging to Predefined Tissue Morphologies. Scientific Reports, 2018, 8, 313.	1.6	37
33	Resistance Exercise Reduces Kynurenine Pathway Metabolites in Breast Cancer Patients Undergoing Radiotherapy. Frontiers in Oncology, 2019, 9, 962.	1.3	35
34	Production of the endocannabinoids anandamide and 2â€arachidonoylglycerol by endothelial progenitor cells. FEBS Letters, 2007, 581, 4927-4931.	1.3	33
35	Suppression of indoleamine-2,3-dioxygenase 1 expression by promoter hypermethylation in ER-positive breast cancer. Oncolmmunology, 2017, 6, e1274477.	2.1	30
36	Tryptophan metabolism in brain tumors — IDO and beyond. Current Opinion in Immunology, 2021, 70, 57-66.	2.4	30

CHRISTIANE A OPITZ

#	Article	IF	CITATIONS
37	Synovial Fibroblasts Selectively Suppress Th1 Cell Responses through IDO1-Mediated Tryptophan Catabolism. Journal of Immunology, 2017, 198, 3109-3117.	0.4	27
38	Plasticity of cardiac titin/connectin in heart development. Journal of Muscle Research and Cell Motility, 2006, 26, 333-342.	0.9	26
39	Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Aspergillus fumigatus Infection. Molecular and Cellular Proteomics, 2017, 16, 2184-2198.	2.5	26
40	Functional screening identifies aryl hydrocarbon receptor as suppressor of lung cancer metastasis. Oncogenesis, 2020, 9, 102.	2.1	24
41	Constitutive Expression of the Immunosuppressive Tryptophan Dioxygenase TDO2 in Glioblastoma Is Driven by the Transcription Factor C/EBPÎ ² . Frontiers in Immunology, 2020, 11, 657.	2.2	24
42	Suppression of Th1 differentiation by tryptophan supplementation in vivo. Amino Acids, 2017, 49, 1169-1175.	1.2	23
43	Hypoxia Inducible Factor 1α Inhibits the Expression of Immunosuppressive Tryptophan-2,3-Dioxygenase in Glioblastoma. Frontiers in Immunology, 2019, 10, 2762.	2.2	22
44	The TSC Complex-mTORC1 Axis: From Lysosomes to Stress Granules and Back. Frontiers in Cell and Developmental Biology, 2021, 9, 751892.	1.8	22
45	Methylome analyses of three glioblastoma cohorts reveal chemotherapy sensitivity markers within DDR genes. Cancer Medicine, 2020, 9, 8373-8385.	1.3	19
46	Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Theranostics, 2021, 11, 9217-9233.	4.6	16
47	Painful neuropathy due to intraneural leukemic spread in a patient with acute myeloid leukemia. Neurology, 2007, 69, 707-707.	1.5	14
48	Hypoxia decreases the T helper cell-suppressive capacity of synovial fibroblasts by downregulating IDO1-mediated tryptophan metabolism. Rheumatology, 2020, 59, 1148-1158.	0.9	12
49	ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms and its loss confers sensitivity to PARP inhibition. Nucleic Acids Research, 2021, 49, 11666-11689.	6.5	8
50	Hepatocyte-intrinsic type I interferon signaling reprograms metabolism and reveals a novel compensatory mechanism of the tryptophan-kynurenine pathway in viral hepatitis. PLoS Pathogens, 2020, 16, e1008973.	2.1	6
51	Hypoxia Routes Tryptophan Homeostasis Towards Increased Tryptamine Production. Frontiers in Immunology, 2021, 12, 590532.	2.2	6
52	The aryl hydrocarbon receptor as a promoter of malignant glioma. Cell Cycle, 2012, 11, 643-644.	1.3	4
53	From anti-aging drugs to cancer therapy: is there a potential for sirtuin activators in gliomas?. Neuro-Oncology, 2021, 23, 3-5.	0.6	2
54	cDC1 to cDC2: "Everything I do, Ido1 it for you― Immunity, 2022, 55, 967-970.	6.6	1

CHRISTIANE A OPITZ

#	Article	IF	CITATIONS
55	O6.09 * PROSTAGLANDIN E RECEPTOR-4 ACTIVATION REGULATES TRYPTOPHAN METABOLISM IN HUMAN MALIGNANT GLIOMAS. Neuro-Oncology, 2014, 16, ii14-ii14.	0.6	0
56	A1.28â€Synovial fibroblasts suppress TH1, but not TH2 or TH17 cells, through tryptophan metabolism. Annals of the Rheumatic Diseases, 2015, 74, A12.1-A12.	0.5	0
57	Epigenetic regulation of indoleamine-2,3-dioxygenase 1 expression in human breast cancer. Breast, 2017, 32, S31-S32.	0.9	0
58	Measuring tryptophan concentrations of aqueous solutions for cancer research using terahertz time-domain spectroscopy with metal parallel-plate waveguides. , 2017, , .		0
59	AB0068â€Hypoxia and rheumatoid phenotype decrease the capacity of synovial fibroblasts to suppress t helper cell proliferation through ido1-mediated tryptophan catabolism. , 2017, , .		0
60	04.11â€Hypoxia and rheumatoid phenotype prevent synovial fibroblasts from suppressing t helper cell proliferation through ido1-mediated tryptophan metabolism. , 2017, , .		0