
David Dauvillée

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2754801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PII1: a protein involved in starch initiation that determines granule number and size in Arabidopsis chloroplast. New Phytologist, 2019, 221, 356-370.	3.5	31
2	Deletion of BSG1 in Chlamydomonas reinhardtii leads to abnormal starch granule size and morphology. Scientific Reports, 2019, 9, 1990.	1.6	16
3	The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation. Journal of Experimental Botany, 2017, 68, 5177-5189.	2.4	16
4	Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase. Biotechnology for Biofuels, 2016, 9, 55.	6.2	50
5	Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids. Algal Research, 2015, 12, 109-118.	2.4	34
6	Crystal Structure of the Chlamydomonas Starch Debranching Enzyme Isoamylase ISA1 Reveals Insights into the Mechanism of Branch Trimming and Complex Assembly. Journal of Biological Chemistry, 2014, 289, 22991-23003.	1.6	51
7	Metabolic Effectors Secreted by Bacterial Pathogens: Essential Facilitators of Plastid Endosymbiosis? Â. Plant Cell, 2013, 25, 7-21.	3.1	112
8	A Forward Genetic Approach in Chlamydomonas reinhardtii as a Strategy for Exploring Starch Catabolism. PLoS ONE, 2013, 8, e74763.	1.1	28
9	Microarray data can predict diurnal changes of starch content in the picoalga Ostreococcus. BMC Systems Biology, 2011, 5, 36.	3.0	37
10	Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 2010, 35, 10731-10740.	3.8	37
11	Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 2010, 12, 387-391.	3.6	338
12	Engineering the Chloroplast Targeted Malarial Vaccine Antigens in Chlamydomonas Starch Granules. PLoS ONE, 2010, 5, e15424.	1.1	72
13	Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate <i>Crypthecodinium cohnii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21126-21130.	3.3	40
14	Hydrogen Production in <i>Chlamydomonas</i> : Photosystem II-Dependent and -Independent Pathways Differ in Their Requirement for Starch Metabolism Â. Plant Physiology, 2009, 151, 631-640.	2.3	154
15	Early Gene Duplication Within Chloroplastida and Its Correspondence With Relocation of Starch Metabolism to Chloroplasts. Genetics, 2008, 178, 2373-2387.	1.2	84
16	Pathway of Cytosolic Starch Synthesis in the Model Glaucophyte <i>Cyanophora paradoxa</i> . Eukaryotic Cell, 2008, 7, 247-257.	3.4	49
17	Metabolic Symbiosis and the Birth of the Plant Kingdom. Molecular Biology and Evolution, 2008, 25, 536-548.	3.5	153
18	The Heterotrophic Dinoflagellate <i>Crypthecodinium cohnii</i> Defines a Model Genetic System To Investigate Cytoplasmic Starch Synthesis. Eukaryotic Cell, 2008, 7, 872-880.	3.4	35

David Dauvillée

#	Article	IF	CITATIONS
19	Plastidial phosphorylase is required for normal starch synthesis inChlamydomonas reinhardtii. Plant Journal, 2006, 48, 274-285.	2.8	105
20	Nature of the Periplastidial Pathway of Starch Synthesis in the Cryptophyte Guillardia theta. Eukaryotic Cell, 2006, 5, 954-963.	3.4	56
21	Circadian Clock Regulation of Starch Metabolism Establishes GBSSI as a Major Contributor to Amylopectin Synthesis in Chlamydomonas reinhardtii Â. Plant Physiology, 2006, 142, 305-317.	2.3	133
22	Glycogen Phosphorylase, the Product of the glgP Gene, Catalyzes Glycogen Breakdown by Removing Glucose Units from the Nonreducing Ends in Escherichia coli. Journal of Bacteriology, 2006, 188, 5266-5272.	1.0	103
23	Mutants of Arabidopsis Lacking Starch Branching Enzyme II Substitute Plastidial Starch Synthesis by Cytoplasmic Maltose Accumulation. Plant Cell, 2006, 18, 2694-2709.	3.1	100
24	Role of the Escherichia coli glgX Gene in Glycogen Metabolism. Journal of Bacteriology, 2005, 187, 1465-1473.	1.0	120
25	Evolution of Plant-Like Crystalline Storage Polysaccharide in the Protozoan Parasite Toxoplasma gondii Argues for a Red Alga Ancestry. Journal of Molecular Evolution, 2005, 60, 257-267.	0.8	120
26	Minimal Extent of Sequence Homology Required for Homologous Recombination at the psbA Locus in Chlamydomonas reinhardtii Chloroplasts using PCR-generated DNA Fragments. Photosynthesis Research, 2004, 79, 219-224.	1.6	31
27	Post-transcriptional steps involved in the assembly of photosystem I in Chlamydomonas. Biochemical Society Transactions, 2004, 32, 567-570.	1.6	21
28	Tab2 is a novel conserved RNA binding protein required for translation of the chloroplast psaB mRNA. EMBO Journal, 2003, 22, 6378-6388.	3.5	75
29	STA11, a Chlamydomonas reinhardtii Locus Required for Normal Starch Granule Biogenesis, Encodes Disproportionating Enzyme. Further Evidence for a Function of α-1,4 Glucanotransferases during Starch Granule Biosynthesis in Green Algae. Plant Physiology, 2003, 132, 137-145.	2.3	47
30	Granule-bound starch synthase I. FEBS Journal, 2002, 269, 3810-3820.	0.2	50
31	When Simpler Is Better. Unicellular Green Algae for Discovering New Genes and Functions in Carbohydrate Metabolism: Fig. 1 Plant Physiology, 2001, 127, 1334-1338.	2.3	46
32	Two Loci Control Phytoglycogen Production in the Monocellular Green Alga Chlamydomonas reinhardtii. Plant Physiology, 2001, 125, 1710-1722.	2.3	45
33	Biochemical Characterization of Wild-Type and Mutant Isoamylases of Chlamydomonas reinhardtii Supports a Function of the Multimeric Enzyme Organization in Amylopectin Maturation. Plant Physiology, 2001, 125, 1723-1731.	2.3	54
34	The debranching enzyme complex missing in glycogen accumulating mutants of Chlamydomonas reinhardtii displays an isoamylase-type specificity. Plant Science, 2000, 157, 145-156.	1.7	27
35	Genetic and Biochemical Evidence for the Involvement of α-1,4 Glucanotransferases in Amylopectin Synthesis1. Plant Physiology, 1999, 120, 993-1004.	2.3	97
36	Novel, Starch-Like Polysaccharides Are Synthesized by an Unbound Form of Granule-Bound Starch Synthase in Glycogen-Accumulating Mutants ofChlamydomonas reinhardtii. Plant Physiology, 1999, 119, 321-330.	2.3	73

#	Article	IF	CITATIONS
37	Biochemical Characterization of the Chlamydomonas reinhardtii α-1,4 Glucanotransferase Supports a Direct Function in Amylopectin Biosynthesis1. Plant Physiology, 1999, 120, 1005-1014.	2.3	80