Saud A Khashan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2754543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidics Based Magnetophoresis: A Review. Chemical Record, 2018, 18, 1596-1612.	5.8	100
2	Novel method for synthesis of Fe 3 O 4 @TiO 2 core/shell nanoparticles. Surface and Coatings Technology, 2017, 322, 92-98.	4.8	97
3	Photocatalytic removal of methylene blue using titania- and silica-coated magnetic nanoparticles. Materials Research Express, 2018, 5, 065518.	1.6	57
4	Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluidics and Nanofluidics, 2012, 12, 565-580.	2.2	54
5	Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Separation and Purification Technology, 2014, 125, 311-318.	7.9	44
6	Photo-thermal characteristics of water-based Fe ₃ O ₄ @SiO ₂ nanofluid for solar-thermal applications. Materials Research Express, 2017, 4, 055701.	1.6	39
7	Modeling the trajectory of microparticles subjected to dielectrophoresis in a microfluidic device for field flow fractionation. Chemical Engineering Science, 2015, 138, 266-280.	3.8	38
8	Numerical simulation of biomagnetic fluid downstream an eccentric stenotic orifice. Physics of Fluids, 2006, 18, 113601.	4.0	34
9	Coupled particle–fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality. Journal Physics D: Applied Physics, 2013, 46, 125002.	2.8	34
10	Lab-on-chip for liquid biopsy (LoC-LB) based on dielectrophoresis. Talanta, 2017, 164, 608-611.	5.5	33
11	CFD simulation of the magnetophoretic separation in a microchannel. Journal of Magnetism and Magnetic Materials, 2011, 323, 2960-2967.	2.3	27
12	Microdevice for continuous flow magnetic separation for bioengineering applications. Journal of Micromechanics and Microengineering, 2017, 27, 055016.	2.6	25
13	Numerical simulation of the continuous biomagnetic separation in a two-dimensional channel. International Journal of Multiphase Flow, 2011, 37, 947-955.	3.4	21
14	A microfluidics device for 3D switching of microparticles using dielectrophoresis. Journal of Electrostatics, 2018, 94, 1-7.	1.9	21
15	A new solar atmospheric water harvesting integrated system using CPV/T – Stirling engine – Absorption cooling cycle and vapor compression refrigeration cycle. International Journal of Energy Research, 2021, 45, 16400-16417.	4.5	18
16	Modeling solute transport affected by heterogeneous sorption kinetics using single-rate nonequilibrium approaches. Journal of Contaminant Hydrology, 2014, 157, 73-86.	3.3	15
17	Path of microparticles in a microfluidic device employing dielectrophoresis for hyperlayer field-flow fractionation. Microsystem Technologies, 2016, 22, 1721-1732.	2.0	14
18	Microfluidic multi-target sorting by magnetic repulsion. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	10

SAUD A KHASHAN

#	Article	IF	CITATIONS
19	Microfluidic Platforms for Bio-applications. Microsystems and Nanosystems, 2017, , 253-282.	0.1	9
20	CFD simulation for biomagnetic separation involving dilute suspensions. Canadian Journal of Chemical Engineering, 2012, 90, 1450-1456.	1.7	6
21	Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width. Lasers in Manufacturing and Materials Processing, 2018, 5, 133-142.	2.2	6
22	Heat transfer characteristics of multi-walled carbon nanotubes suspension in a developing channel flow. Heat and Mass Transfer, 2013, 49, 1681-1687.	2.1	5
23	Dielectrophoretic Microfluidic Device for Separating Microparticles Based on Size with Sub-Micron Resolution. Micromachines, 2020, 11, 653.	2.9	5
24	Fabrication of microfluidic devices with 3D embedded flow-invasive microelements. Microelectronic Engineering, 2018, 187-188, 27-32.	2.4	4
25	Cost effective maskless lithography: Direct UV laser writing of microstructures for microfluidics applications. , 2018, , .		2
26	Gaseous slip flow affected by inclined low magnetic field using secondâ€order boundary conditions. Heat Transfer, 2020, 49, 909-931.	3.0	2
27	Modeling and simulation of the multiphase flow involving magnetophoresis-based microfluidic systems. Proceedings of SPIE, 2015, , .	0.8	1
28	Magnetophoretic separation in microfluidic system. Materials Today: Proceedings, 2021, 47, 1295-1300.	1.8	1
29	Dielectrophoretic 3Dâ€focusing for onâ€chip flow cytometry. Micro and Nano Letters, 2020, 15, 296-301.	1.3	1
30	Numerical Investigation of Solar Chimney Power Plant in UAE. Springer Proceedings in Energy, 2014, , 513-524.	0.3	1
31	Continuous Separation of Cancer Cells From Blood in a Microfluidic Channel Using Dielectrophoresis. , 2014, , .		0
32	Tracking Microparticles Subjected to Dielectrophoresis in a Continuous Flow Microdevice. , 2015, , .		0
33	Trajectory of microparticles actuated with standing surface acoustic waves in microfluidic devices. , 2015, , .		Ο
34	Trajectory of microscale entities in a microdevice for field-flow fractionation based on dielectrophoresis. Proceedings of SPIE, 2015, , .	0.8	0
35	Microfabrication of multi-layered electrodes for dielectrophoresis-based field flow fractionation. Proceedings of SPIE, 2015, , .	0.8	0
36	Thermal efficiency of a direct absorption solar collector using magnetic nanofluids. , 2018, , .		0

#	Article	IF	CITATIONS
37	CFD Investigation of the Effect of Cerebral Aneurysms Size on Wall Stresses and Strain. , 2019, , .		Ο
38	Mathematical Model of Microfluidic Devices Employing Dielectrophoresis for 3D-Focusing. , 2019, , .		0
39	Studying the impact of depth of focus on 3D profile of negative photoresist material: a simulation approach. SN Applied Sciences, 2020, 2, 1.	2.9	0
40	Code Development and Validation of RANS Solvers for Flows Around Bluff Bodies. , 2002, , .		0