
Wenbiao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2754292/publications.pdf Version: 2024-02-01

WENRIAG CHEN

#	Article	IF	CITATIONS
1	A Vegfc-Emilin2a-Cxcl8a Signaling Axis Required for Zebrafish Cardiac Regeneration. Circulation Research, 2022, 130, 1014-1029.	4.5	14
2	Genome-wide CRISPR screen identified a role for commander complex mediated ITGB1 recycling in basal insulin secretion. Molecular Metabolism, 2022, 63, 101541.	6.5	3
3	Taste buds are not derived from neural crest in mouse, chicken, and zebrafish. Developmental Biology, 2021, 471, 76-88.	2.0	4
4	Predicting susceptibility to SARSâ€CoVâ€2 infection based on structural differences in ACE2 across species. FASEB Journal, 2020, 34, 15946-15960.	0.5	44
5	In-depth characterization of the biomarkers based on tumor-infiltrated immune cells reveals implications for diagnosis and prognosis in hepatocellular carcinoma. Journal of Translational Autoimmunity, 2020, 3, 100067.	4.0	6
6	Comprehensive Study of Tumor Immune Microenvironment and Relevant Genes in Hepatocellular Carcinoma Identifies Potential Prognostic Significance. Frontiers in Oncology, 2020, 10, 554165.	2.8	7
7	Identification and Validation of Immune-Related Gene Prognostic Signature for Hepatocellular Carcinoma. Journal of Immunology Research, 2020, 2020, 1-14.	2.2	50
8	Systematic genome editing of the genes spanning an entire chromosome by CRISPR/Cas9 in a vertebrate—zebrafish (Danio rerio). Science China Life Sciences, 2020, 63, 1096-1097.	4.9	3
9	Mining Prognostic Biomarkers of Hepatocellular Carcinoma Based on Immune-Associated Genes. DNA and Cell Biology, 2020, 39, 499-512.	1.9	8
10	Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. International Journal of Molecular Sciences, 2020, 21, 724.	4.1	7
11	RIPK3-mediated inflammation is a conserved \hat{I}^2 cell response to ER stress. Science Advances, 2020, 6, .	10.3	33
12	In vivo generation and regeneration of \hat{l}^2 cells in zebrafish. Cell Regeneration, 2020, 9, 9.	2.6	8
13	2070-P: KCNJ11 (Kir6.2) Gain-of-Function Mutation in Zebrafish Leads to Transient Neonatal Diabetes. Diabetes, 2020, 69, 2070-P.	0.6	0
14	MON-712 Restoration of Growth and Fertility in Zebrafish (Danio Rerio) Model with PROP1 Knockout Generated by CRISPR/Cas9 Genomic Editing. Journal of the Endocrine Society, 2020, 4, .	0.2	0
15	Therapeutic Silencing of Centromere Protein X Ameliorates Hyperglycemia in Zebrafish and Mouse Models of Type 2 Diabetes Mellitus. Frontiers in Genetics, 2019, 10, 693.	2.3	3
16	Identifying Hepatocellular Carcinoma Driver Genes by Integrative Pathway Crosstalk and Protein Interaction Network. DNA and Cell Biology, 2019, 38, 1112-1124.	1.9	8
17	198-OR: Role for the Cationic Amino Acid Transporter Slc7a2 in Alpha-Cell Proliferation and Islet Hormone Secretion. Diabetes, 2019, 68, .	0.6	4
18	Microinjection of CRISPR/Cas9 Protein into Channel Catfish, Ictalurus punctatus , Embryos for Gene Editing. Journal of Visualized Experiments, 2018, , .	0.3	20

WENBIAO CHEN

#	Article	IF	CITATIONS
19	Zebrafish as a Model for Obesity and Diabetes. Frontiers in Cell and Developmental Biology, 2018, 6, 91.	3.7	175
20	Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metabolism, 2017, 25, 1362-1373.e5.	16.2	153
21	Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy, 2017, 13, 386-403.	9.1	49
22	Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish. Frontiers in Endocrinology, 2017, 8, 9.	3.5	12
23	FGF1 Mediates Overnutrition-Induced Compensatory \hat{I}^2 -Cell Differentiation. Diabetes, 2016, 65, 96-109.	0.6	28
24	Zebrafish Genome Engineering Using the CRISPR–Cas9 System. Trends in Genetics, 2016, 32, 815-827.	6.7	128
25	Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature, 2016, 530, 57-62.	27.8	318
26	Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3084-3089.	7.1	136
27	Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro-Oncology, 2016, 18, 48-57.	1.2	66
28	Skeletal muscle insulin resistance in zebrafish induces alterations in β-cell number and glucose tolerance in an age- and diet-dependent manner. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E662-E669.	3.5	48
29	Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior. Journal of Neuroscience, 2015, 35, 2572-2587.	3.6	111
30	Oncogenic KRAS promotes malignant brain tumors in zebrafish. Molecular Cancer, 2015, 14, 18.	19.2	48
31	A conserved role of αA-crystallin in the development of the zebrafish embryonic lens. Experimental Eye Research, 2015, 138, 104-113.	2.6	24
32	High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research, 2015, 25, 1030-1042.	5.5	458
33	Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs. Genetics, 2015, 200, 431-441.	2.9	128
34	Glucagon receptor inactivation leads to α-cell hyperplasia in zebrafish. Journal of Endocrinology, 2015, 227, 93-103.	2.6	35
35	Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System. Methods in Molecular Biology, 2015, 1332, 205-217.	0.9	34
36	Overnutrition induces β-cell differentiation through prolonged activation of β-cells in zebrafish larvae. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E799-E807.	3.5	29

WENBIAO CHEN

#	Article	IF	CITATIONS
37	Spatial Regionalization and Heterochrony in the Formation of Adult Pallial Neural Stem Cells. Developmental Cell, 2014, 30, 123-136.	7.0	88
38	Conditional Gene-Trap Mutagenesis in Zebrafish. Methods in Molecular Biology, 2014, 1101, 393-411.	0.9	9
39	Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the United States of America, 2013, 110, 13904-13909.	7.1	1,152
40	Targeted Overexpression of CKI-Insensitive Cyclin-Dependent Kinase 4 Increases Functional <i>β</i> -Cell Number Through Enhanced Self-Replication in Zebrafish. Zebrafish, 2013, 10, 170-176.	1.1	7
41	Nutrient Excess Stimulates β-Cell Neogenesis in Zebrafish. Diabetes, 2012, 61, 2517-2524.	0.6	53
42	Conditional control of gene function by an invertible gene trap in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15389-15394.	7.1	66
43	Generating Conditional Mutations in Zebrafish Using Gene-trap Mutagenesis. Methods in Cell Biology, 2011, 104, 1-22.	1.1	14
44	PhiC31 integrase induces efficient site-specific excision in zebrafish. Transgenic Research, 2011, 20, 183-189.	2.4	26
45	Pineal-specific agouti protein regulates teleost background adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20164-20171.	7.1	65
46	FlExâ€based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis, 2009, 47, 484-491.	1.6	80
47	A gain-of-function screen in zebrafish identifies a guanylate cyclase with a role in neuronal degeneration. Molecular Genetics and Genomics, 2009, 281, 551-563.	2.1	14
48	Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish. Molecular Cancer, 2009, 8, 40.	19.2	42
49	Using retroviruses as a mutagenesis tool to explore the zebrafish genome. Briefings in Functional Genomics & Proteomics, 2008, 7, 427-443.	3.8	29
50	Two ribeye Genes in Teleosts: The Role of Ribeye in Ribbon Formation and Bipolar Cell Development. Journal of Neuroscience, 2005, 25, 941-949.	3.6	77
51	Three modules of zebrafish Mind bomb work cooperatively to promote Delta ubiquitination and endocytosis. Developmental Biology, 2004, 267, 361-373.	2.0	58
52	High-Throughput Selection of Retrovirus Producer Cell Lines Leads to Markedly Improved Efficiency of Germ Line-Transmissible Insertions in Zebra Fish. Journal of Virology, 2002, 76, 2192-2198.	3.4	85
53	Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nature Genetics, 2002, 31, 135-140.	21.4	522
54	The zebrafish <i>spiel-ohne-grenzen</i> (<i>spg</i>) gene encodes the POU domain protein Pou2 related to mammalian <i>Oct4</i> and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development (Cambridge), 2002, 129, 905-916.	2.5	130

WENBIAO CHEN

#	Article	IF	CITATIONS
55	Analysis of the zebrafish <i>smoothened</i> mutant reveals conserved and divergent functions of hedgehog activity. Development (Cambridge), 2001, 128, 2385-2396.	2.5	219
56	The Melanocortin-5 Receptor. , 2000, , 449-472.		3
57	A large-scale insertional mutagenesis screen in zebrafish. Genes and Development, 1999, 13, 2713-2724.	5.9	440
58	Exocrine Gland Dysfunction in MC5-R-Deficient Mice: Evidence for Coordinated Regulation of Exocrine Gland Function by Melanocortin Peptides. Cell, 1997, 91, 789-798.	28.9	466
59	A Colorimetric Assay for Measuring Activation of Gs- and Gq-Coupled Signaling Pathways. Analytical Biochemistry, 1995, 226, 349-354.	2.4	192
60	Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature, 1994, 371, 799-802.	27.8	999