Li Jinghong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2754249/publications.pdf

Version: 2024-02-01

766 1314 55,877 447 119 224 citations h-index g-index papers 457 457 457 52348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews, 2012, 112, 6027-6053.	23.0	3,024
2	P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano, 2010, 4, 380-386.	7.3	2,946
3	Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010, 4, 1790-1798.	7.3	1,977
4	Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 2009, 4, 505-509.	15.6	1,459
5	Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011, 29, 205-212.	4.9	1,327
6	Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010, 39, 3157.	18.7	1,297
7	Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials, 2009, 19, 2782-2789.	7.8	1,132
8	Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 2009, 11, 889-892.	2.3	1,067
9	Aptamer/Graphene Oxide Nanocomplex for <i>in Situ</i> Molecular Probing in Living Cells. Journal of the American Chemical Society, 2010, 132, 9274-9276.	6.6	1,020
10	Nanostructured carbon for energy storage and conversion. Nano Energy, 2012, 1, 195-220.	8.2	895
11	Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Analytical Chemistry, 2010, 82, 2341-2346.	3.2	848
12	Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications, 2009, 11, 846-849.	2.3	675
13	Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. Journal of the American Chemical Society, 2016, 138, 14686-14693.	6.6	647
14	A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode. Advanced Functional Materials, 2006, 16, 2141-2146.	7.8	568
15	Tuning Photoelectrochemical Performances of Agâ^'TiO ₂ Nanocomposites via Reduction/Oxidation of Ag. Chemistry of Materials, 2008, 20, 6543-6549.	3.2	546
16	Graphene and Grapheneâ€like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	5.2	535
17	Two-dimensional layered MoS ₂ : rational design, properties and electrochemical applications. Energy and Environmental Science, 2016, 9, 1190-1209.	15.6	532
18	Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2158-2165.	4.0	486

#	Article	IF	CITATIONS
19	In Situ Growth of Mesoporous SnO ₂ on Multiwalled Carbon Nanotubes: A Novel Composite with Porousâ€Tube Structure as Anode for Lithium Batteries. Advanced Functional Materials, 2007, 17, 2772-2778.	7.8	470
20	Co Nanoislands Rooted on Co–N–C Nanosheets as Efficient Oxygen Electrocatalyst for Zn–Air Batteries. Advanced Materials, 2019, 31, e1901666.	11.1	455
21	Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nature Nanotechnology, 2019, 14, 379-387.	15.6	448
22	Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087.	10.2	437
23	A low-temperature method to produce highly reduced graphene oxide. Nature Communications, 2013, 4, 1539.	5.8	436
24	Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Analytical Chemistry, 2009, 81, 9710-9715.	3.2	397
25	Toeholdâ€initiated Rolling Circle Amplification for Visualizing Individual MicroRNAs In Situ in Single Cells. Angewandte Chemie - International Edition, 2014, 53, 2389-2393.	7.2	384
26	Preparation of SnO ₂ -Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability. Journal of Physical Chemistry C, 2010, 114, 21770-21774.	1.5	377
27	Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Analytical Chemistry, 2010, 82, 6208-6214.	3.2	365
28	Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy and Environmental Science, 2013, 6, 1362.	15.6	355
29	Positive Potential Operation of a Cathodic Electrogenerated Chemiluminescence Immunosensor Based on Luminol and Graphene for Cancer Biomarker Detection. Analytical Chemistry, 2011, 83, 3817-3823.	3.2	347
30	Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today, 2013, 8, 56-74.	6.2	329
31	Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 2010, 12, 1685.	1.3	327
32	Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosensors and Bioelectronics, 2007, 22, 3203-3209.	5.3	312
33	Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale, 2018, 10, 21617-21624.	2.8	312
34	Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16028-16032.	3.3	310
35	Core/Shell Pt/C Nanoparticles Embedded in Mesoporous Carbon as a Methanol†olerant Cathode Catalyst in Direct Methanol Fuel Cells. Advanced Materials, 2008, 20, 743-747.	11.1	307
36	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	2.8	290

#	Article	IF	Citations
37	Recent progress in electrocatalytic nitrogen reduction. Journal of Materials Chemistry A, 2019, 7, 3531-3543.	5.2	290
38	Composite System Based on Chitosan and Room-Temperature Ionic Liquid:Â Direct Electrochemistry and Electrocatalysis of Hemoglobin. Biomacromolecules, 2006, 7, 975-980.	2.6	289
39	CdS Quantum Dots-Sensitized TiO ₂ Nanorod Array on Transparent Conductive Glass Photoelectrodes. Journal of Physical Chemistry C, 2010, 114, 16451-16455.	1.5	288
40	Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell. Accounts of Chemical Research, 2017, 50, 1059-1068.	7.6	279
41	Imaging the electrocatalytic activity of single nanoparticles. Nature Nanotechnology, 2012, 7, 668-672.	15.6	273
42	Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach. Chemistry of Materials, 2004, 16, 4022-4027.	3.2	256
43	Selfâ€Assembled Graphene–Enzyme Hierarchical Nanostructures for Electrochemical Biosensing. Advanced Functional Materials, 2010, 20, 3366-3372.	7.8	256
44	Facilitated Lithium Storage in MoS2Overlayers Supported on Coaxial Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1675-1682.	1.5	253
45	Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics. ACS Sensors, 2017, 2, 857-875.	4.0	250
46	Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chemical Society Reviews, 2018, 47, 6795-6823.	18.7	250
47	Photoelectrochemical Study on Charge Transfer Properties of TiO2â^B Nanowires with an Application as Humidity Sensors. Journal of Physical Chemistry B, 2006, 110, 22029-22034.	1.2	247
48	Optical properties and applications of hybrid semiconductor nanomaterials. Coordination Chemistry Reviews, 2009, 253, 3015-3041.	9.5	243
49	Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution. Journal of the American Chemical Society, 2009, 131, 9908-9909.	6.6	238
50	An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochemistry Communications, 2005, 7, 1357-1363.	2.3	229
51	Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect. Langmuir, 2004, 20, 10260-10267.	1.6	225
52	Au/TiO ₂ /Au as a Plasmonic Coupling Photocatalyst. Journal of Physical Chemistry C, 2012, 116, 6490-6494.	1.5	220
53	Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21, 5319.	6.7	219
54	Hierarchical Structures Based on Twoâ€Dimensional Nanomaterials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2017, 7, 1601906.	10.2	216

#	Article	IF	Citations
55	In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet–based sensing platform in living cells. Nature Protocols, 2014, 9, 1944-1955.	5.5	215
56	Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2527-2539.	5.2	214
57	In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. Small, 2017, 13, 1602873.	5.2	212
58	Biofunctional Titania Nanotubes for Visible-Light-Activated Photoelectrochemical Biosensing. Analytical Chemistry, 2010, 82, 2253-2261.	3.2	206
59	Colorimetric and Ultrasensitive Bioassay Based on a Dual-Amplification System Using Aptamer and DNAzyme. Analytical Chemistry, 2012, 84, 4711-4717.	3.2	203
60	Highly Photoluminescent CdTe/Poly(N-isopropylacrylamide) Temperature-Sensitive Gels. Advanced Materials, 2005, 17, 163-166.	11,1	201
61	Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosensors and Bioelectronics, 2011 , 26 , 2632 - 2637 .	5.3	196
62	Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. Journal of Materials Chemistry, 2012, 22, 1539-1546.	6.7	195
63	Proton-driven transformable nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1053-1064.	15.6	194
64	Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO ₂ Films for Solar Energy Conversion Applications. Journal of Physical Chemistry C, 2008, 112, 1282-1292.	1.5	192
65	Oneâ€Pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of a BiOBr–Graphene Composite. Chemistry - A European Journal, 2012, 18, 14359-14366.	1.7	191
66	In Situ Live Cell Sensing of Multiple Nucleotides Exploiting DNA/RNA Aptamers and Graphene Oxide Nanosheets. Analytical Chemistry, 2013, 85, 6775-6782.	3.2	189
67	Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnOâ^'TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2008, 112, 117-122.	1.5	186
68	The graphene/nucleic acid nanobiointerface. Chemical Society Reviews, 2015, 44, 6954-6980.	18.7	181
69	DNA-Directed Self-Assembly of Graphene Oxide with Applications to Ultrasensitive Oligonucleotide Assay. ACS Nano, 2011, 5, 3817-3822.	7.3	177
70	Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy, 2019, 59, 10-16.	8.2	176
71	Metal oxide hollow nanostructures: Fabrication and Li storage performance. Journal of Power Sources, 2013, 238, 376-387.	4.0	174
72	Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody–antigen reactions. Biosensors and Bioelectronics, 2004, 19, 575-582.	5. 3	173

#	Article	IF	Citations
73	Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications, 2006, 8, 874-878.	2.3	173
74	Pt Nanoparticles Inserting in Carbon Nanotube Arrays: Nanocomposites for Glucose Biosensors. Journal of Physical Chemistry C, 2009, 113, 13482-13487.	1.5	171
75	Synergy of Non-antibiotic Drugs and Pyrimidinethiol on Gold Nanoparticles against Superbugs. Journal of the American Chemical Society, 2013, 135, 12940-12943.	6.6	170
76	Hierarchical Carbonâ€Coated LiFePO ₄ Nanoplate Microspheres with High Electrochemical Performance for Liâ€Ion Batteries. Advanced Materials, 2011, 23, 1126-1129.	11.1	168
77	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
78	Sensitive and Rapid Screening of T4 Polynucleotide Kinase Activity and Inhibition Based on Coupled Exonuclease Reaction and Graphene Oxide Platform. Analytical Chemistry, 2011, 83, 8396-8402.	3.2	163
79	A Facile Way to Rejuvenate Ag ₃ PO ₄ as a Recyclable Highly Efficient Photocatalyst. Chemistry - A European Journal, 2012, 18, 5524-5529.	1.7	163
80	Chemiluminescence of CdTe Nanocrystals Induced by Direct Chemical Oxidation and Its Size-Dependent and Surfactant-Sensitized Effect. Journal of Physical Chemistry B, 2005, 109, 23304-23311.	1.2	160
81	Gold Nanoparticles With Special Shapes: Controlled Synthesis, Surface-enhanced Raman Scattering, and The Application in Biodetection. Sensors, 2007, 7, 3299-3311.	2.1	158
82	Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosensors and Bioelectronics, 2008, 23, 1236-1243.	5.3	158
83	Sensitive Electrochemical Aptamer Biosensor for Dynamic Cell Surface <i>N</i> Glycan Evaluation Featuring Multivalent Recognition and Signal Amplification on a Dendrimer–Graphene Electrode Interface. Analytical Chemistry, 2014, 86, 4278-4286.	3.2	158
84	Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 2018, 20, 121-137.	6.2	156
85	Interfacial Bioelectrochemistry:  Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces. Journal of Physical Chemistry C, 2007, 111, 2351-2367.	1.5	155
86	Dynamic Evaluation of Cell Surface <i>N</i> -Glycan Expression via an Electrogenerated Chemiluminescence Biosensor Based on Concanavalin A-Integrating Gold-Nanoparticle-Modified Ru(bpy) ₃ ²⁺ -Doped Silica Nanoprobe. Analytical Chemistry, 2013, 85, 4431-4438.	3.2	155
87	Formation of Bi ₂ WO ₆ Bipyramids with Vacancy Pairs for Enhanced Solarâ€Driven Photoactivity. Advanced Functional Materials, 2015, 25, 3726-3734.	7.8	155
88	Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon, 2005, 43, 2579-2587.	5.4	154
89	Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chemical Communications, 2010, 46, 5882.	2.2	153
90	Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosensors and Bioelectronics, 2012, 35, 63-68.	5.3	150

#	Article	IF	CITATIONS
91	Electrochemical Functionalization of Single-Walled Carbon Nanotubes in Large Quantities at a Room-Temperature Ionic Liquid Supported Three-Dimensional Network Electrode. Langmuir, 2005, 21, 4797-4800.	1.6	149
92	Template Synthesis of Aligned Carbon Nanotube Arrays using Glucose as a Carbon Source: Pt Decoration of Inner and Outer Nanotube Surfaces for Fuelâ€Cell Catalysts. Advanced Functional Materials, 2008, 18, 959-964.	7.8	149
93	A Hybrid Electrochemicalâ^Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 2009, 131, 1390-1391.	6.6	146
94	Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol–gel host materials. Chemical Communications, 2005, , 1778-1780.	2.2	145
95	Highly Sensitive Electrogenerated Chemiluminescence Biosensor in Profiling Protein Kinase Activity and Inhibition Using Gold Nanoparticle as Signal Transduction Probes. Analytical Chemistry, 2010, 82, 9566-9572.	3.2	145
96	Poly-I-lysine Functionalization of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 15343-15346.	1.2	141
97	Preparation of Flower-like SnO ₂ Nanostructures and Their Applications in Gas-Sensing and Lithium Storage. Crystal Growth and Design, 2011, 11, 2942-2947.	1.4	141
98	V-Shaped Tin Oxide Nanostructures Featuring a Broad Photocurrent Signal: An Effective Visible-Light-Driven Photocatalyst. Small, 2006, 2, 1436-1439.	5.2	140
99	Fabrication of a Biocompatible and Conductive Platform Based on a Singleâ€Stranded DNA/Graphene Nanocomposite for Direct Electrochemistry and Electrocatalysis. Chemistry - A European Journal, 2010, 16, 8133-8139.	1.7	139
100	Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 7008.	1.3	138
101	A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application. Green Chemistry, 2005, 7, 655.	4.6	137
102	Hydrazine-Linked Convergent Self-Assembly of Sophisticated Concave Polyhedrons of \hat{l}^2 -Ni(OH) ₂ and NiO from Nanoplate Building Blocks. Journal of the American Chemical Society, 2009, 131, 2959-2964.	6.6	137
103	Carbon-coated hollow mesoporous FeP microcubes: an efficient and stable electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 8974-8977.	5.2	137
104	DNA-Sequence-Encoded Rolling Circle Amplicon for Single-Cell RNA Imaging. CheM, 2018, 4, 1373-1386.	5.8	137
105	Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells. Electrochemistry Communications, 2007, 9, 1867-1872.	2.3	135
106	Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification. Chemical Science, 2017, 8, 3668-3675.	3.7	134
107	Interfacial design and functionization on metal electrodes through self-assembled monolayers. Surface Science Reports, 2006, 61, 445-463.	3.8	133
108	Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosensors and Bioelectronics, 2007, 22, 1126-1130.	5.3	132

#	Article	IF	Citations
109	Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Research, 2011, 4, 882-890.	5.8	131
110	Electrochemical DNA Biosensor Based on the Proximity-Dependent Surface Hybridization Assay. Analytical Chemistry, 2009, 81, 1982-1987.	3.2	130
111	Discovery of the DNA "Genetic Code―for Abiological Gold Nanoparticle Morphologies. Angewandte Chemie - International Edition, 2012, 51, 9078-9082.	7.2	128
112	Co ₉ S ₈ nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Nanoscale, 2017, 9, 12432-12440.	2.8	128
113	Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films. Journal of Power Sources, 2006, 155, 118-127.	4.0	127
114	Duplex DNA/Graphene Oxide Biointerface: From Fundamental Understanding to Specific Enzymatic Effects. Advanced Functional Materials, 2012, 22, 3083-3088.	7.8	127
115	Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets. Biosensors and Bioelectronics, 2007, 23, 102-106.	5.3	125
116	Target-fueled DNA walker for highly selective miRNA detection. Chemical Science, 2015, 6, 6777-6782.	3.7	125
117	Room Temperature Ionic Liquid Based Polystyrene Nanofibers with Superhydrophobicity and Conductivity Produced by Electrospinning. Chemistry of Materials, 2008, 20, 3420-3424.	3.2	123
118	Facile synthesis of AgBr nanoplates with exposed $\{111\}$ facets and enhanced photocatalytic properties. Chemical Communications, 2012, 48, 275-277.	2.2	123
119	Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochemistry Communications, 2004, 6, 1180-1184.	2.3	122
120	Facile Synthesis of Wideâ€Bandgap Fluorinated Graphene Semiconductors. Chemistry - A European Journal, 2011, 17, 8896-8903.	1.7	121
121	Facile "Spotâ€Heating―Synthesis of Carbon Dots/Carbon Nitride for Solar Hydrogen Evolution Synchronously with Contaminant Decomposition. Advanced Functional Materials, 2018, 28, 1706462.	7.8	121
122	Atomic-Level Nanorings (A-NRs) Therapeutic Agent for Photoacoustic Imaging and Photothermal/Photodynamic Therapy of Cancer. Journal of the American Chemical Society, 2020, 142, 1735-1739.	6.6	121
123	Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications. Small, 2020, 16, e1903398.	5.2	120
124	Quantum dots sensitized graphene: In situ growth and application in photoelectrochemical cells. Electrochemistry Communications, 2010, 12, 483-487.	2.3	118
125	Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials, 2006, 27, 5740-5747.	5.7	116
126	Molybdenum Carbideâ€Decorated Metallic Cobalt@Nitrogenâ€Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1704227.	5.2	114

#	Article	IF	Citations
127	Unique Hierarchical Mo ₂ C/C Nanosheet Hybrids as Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 41314-41322.	4.0	112
128	Localized surface plasmon resonance for enhanced electrocatalysis. Chemical Society Reviews, 2021, 50, 12070-12097.	18.7	112
129	Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33, 1117-1125.	1.4	111
130	Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional TiO2Nanostructures. Inorganic Chemistry, 2006, 45, 6944-6949.	1.9	111
131	Layered Titanate Nanosheets Intercalated with Myoglobin for Direct Electrochemistry. Advanced Functional Materials, 2007, 17, 1958-1965.	7.8	111
132	Hierarchial Mesoporous Hematite with "Electron-Transport Channels―and Its Improved Performances in Photocatalysis and Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 7126-7133.	1.5	110
133	α-Fe ₂ O ₃ spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 13635-13640.	5.2	110
134	Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorodsElectronic supplementary information (ESI) available: instrumentation, discussion of dipole attraction, XRD pattern of CdTe nanorods and TEM image of CdTe nanowires. See http://www.rsc.org/suppdata/cc/b4/b405623i/. Chemical Communications, 2004, , 1740.	2.2	109
135	DNAâ€Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds. Angewandte Chemie - International Edition, 2015, 54, 8114-8118.	7.2	109
136	Preparation and Properties of Nanostructure Anatase TiO2 Monoliths Using 1-Butyl-3-methylimidazolium Tetrafluoroborate Room-Temperature Ionic Liquids as Template Solvents. Crystal Growth and Design, 2005, 5, 1643-1649.	1.4	108
137	A Room-Temperature Ionic-Liquid-Templated Proton-Conducting Gelatinous Electrolyte. Journal of Physical Chemistry B, 2004, 108, 17512-17518.	1.2	106
138	Direct Visualization of Single-Nucleotide Variation in mtDNA Using a CRISPR/Cas9-Mediated Proximity Ligation Assay. Journal of the American Chemical Society, 2018, 140, 11293-11301.	6.6	106
139	RNA Strand Displacement Responsive CRISPR/Cas9 System for mRNA Sensing. Analytical Chemistry, 2019, 91, 3989-3996.	3.2	106
140	Antisense Oligonucleotide-Conjugated Nanostructure-Targeting IncRNA MALAT1 Inhibits Cancer Metastasis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37-42.	4.0	106
141	In Situ Amplified Chemiluminescent Detection of DNA and Immunoassay of IgG Using Special-Shaped Gold Nanoparticles as Label. Clinical Chemistry, 2006, 52, 1958-1961.	1.5	105
142	Tunable Photocurrent Spectrum in Well-Oriented Zinc Oxide Nanorod Arrays with Enhanced Photocatalytic Activity. Journal of Physical Chemistry C, 2008, 112, 8850-8855.	1.5	104
143	Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nature Communications, $2010,1,31.$	5.8	104
144	Graphene-polymer composite: extraction of polycyclic aromatic hydrocarbons from water samples by stir rod sorptive extraction. Analytical Methods, 2011, 3, 92-98.	1.3	104

#	Article	IF	Citations
145	Emerging Applications of Nanotechnology for Controlling Cellâ€Surface Receptor Clustering. Angewandte Chemie - International Edition, 2019, 58, 4790-4799.	7.2	103
146	DNA Assembled Gold Nanoparticles Polymeric Network Blocks Modular Highly Sensitive Electrochemical Biosensors for Protein Kinase Activity Analysis and Inhibition. Analytical Chemistry, 2014, 86, 6153-6159.	3.2	102
147	Self-assembled monolayers of thiols on gold electrodes for bioelectrochemistry and biosensors. Bioelectrochemistry, 1997, 42, 7-13.	1.0	100
148	Temperature, ionic strength and pH induced electrochemical switching of smart polymer interfaces. Chemical Communications, 2006, , 4820.	2.2	100
149	Strong reduced graphene oxide–polymer composites: hydrogels and wires. RSC Advances, 2012, 2, 6988.	1.7	98
150	Highâ€Temperature Gating of Solidâ€State Nanopores with Thermoâ€Responsive Macromolecular Nanoactuators in Ionic Liquids. Advanced Materials, 2012, 24, 962-967.	11.1	98
151	Hybrid layered double hydroxides as multifunctional nanomaterials for overall water splitting and supercapacitor applications. Journal of Materials Chemistry A, 2021, 9, 4528-4557.	5.2	98
152	A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte. Electrochimica Acta, 2006, 51, 1925-1931.	2.6	95
153	Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst, The, 2011, 136, 4732.	1.7	95
154	Electrocatalysis on Shapeâ€Controlled Titanium Nitride Nanocrystals for the Oxygen Reduction Reaction. ChemSusChem, 2013, 6, 2016-2021.	3.6	95
155	Enhanced Photocatalytic Properties of Mesoporous SnO2Induced by Low Concentration ZnO Doping. Crystal Growth and Design, 2007, 7, 1722-1725.	1.4	93
156	Direct electron transfer to cytochrome c oxidase in self-assembled monolayers on gold electrodes. Journal of Electroanalytical Chemistry, 1996, 416, 97-104.	1.9	92
157	Sensitive Nanochannel Biosensor for T4 Polynucleotide Kinase Activity and Inhibition Detection. Analytical Chemistry, 2013, 85, 334-340.	3.2	92
158	Three-Dimensional Nitrogen-Doped Graphene/MnO Nanoparticle Hybrids as a High-Performance Catalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 8032-8037.	1.5	92
159	Synergistic Electrocatalytic Nitrogen Reduction Enabled by Confinement of Nanosized Au Particles onto a Two-Dimensional Ti ₃ C ₂ Substrate. ACS Applied Materials & amp; Interfaces, 2019, 11, 25758-25765.	4.0	92
160	Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution. Environmental Science & Eamp; Technology, 2015, 49, 9289-9297.	4.6	91
161	Reusable and Dual-Potential Responses Electrogenerated Chemiluminescence Biosensor for Synchronously Cytosensing and Dynamic Cell Surface N-Glycan Evaluation. Analytical Chemistry, 2015, 87, 9777-9785.	3.2	90
162	Polycrystalline CoP/CoP ₂ Structures for Efficient Full Water Splitting. ChemElectroChem, 2018, 5, 701-707.	1.7	90

#	Article	IF	Citations
163	Oriented nano-structured hydroxyapatite from the template. Chemical Physics Letters, 2003, 376, 493-497.	1.2	88
164	Amplified Tandem Spinach-Based Aptamer Transcription Enables Low Background miRNA Detection. Analytical Chemistry, 2018, 90, 10001-10008.	3.2	88
165	Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Biosensors and Bioelectronics, 2008, 23, 1534-1539.	5.3	86
166	The self-assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials. Journal of Materials Chemistry, 2011, 21, 10189.	6.7	85
167	Facile synthesis of Ag3PO4 tetrapod microcrystals with an increased percentage of exposed {110} facets and highly efficient photocatalytic properties. CrystEngComm, 2012, 14, 8342.	1.3	85
168	Facetâ€Dependent Photocatalytic Properties of AgBr Nanocrystals. Small, 2012, 8, 2802-2806.	5.2	84
169	Preparation of Porous Aminopropylsilsesquioxane by a Nonhydrolytic Solâ^Gel Method in Ionic Liquid Solvent. Langmuir, 2005, 21, 1618-1622.	1.6	83
170	Cascade Transcription Amplification of RNA Aptamer for Ultrasensitive MicroRNA Detection. Analytical Chemistry, 2019, 91, 5295-5302.	3.2	83
171	A paper-based assay for the colorimetric detection of SARS-CoV-2 variants at single-nucleotide resolution. Nature Biomedical Engineering, 2022, 6, 957-967.	11.6	83
172	Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Analytical Chemistry, 2014, 86, 10546-10551.	3.2	81
173	Electrodeposition of Platinum in Room-Temperature Ionic Liquids and Electrocatalytic Effect on Electro-oxidation of Methanol. Journal of the Electrochemical Society, 2005, 152, E146.	1.3	79
174	Hierarchically structured carbon nanocomposites as electrode materials for electrochemical energy storage, conversion and biosensor systems. Journal of Materials Chemistry, 2009, 19, 8707.	6.7	77
175	Energy-Efficient Photodegradation of Azo Dyes with TiO ₂ Nanoparticles Based on Photoisomerization and Alternate UVâ^Visible Light. Environmental Science & Echnology, 2010, 44, 1107-1111.	4.6	77
176	Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Nanoscale, 2015, 7, 987-993.	2.8	77
177	Photoactuation Healing of αâ€FeOOH@g ₃ N ₄ Catalyst for Efficient and Stable Activation of Persulfate. Small, 2017, 13, 1702225.	5.2	76
178	Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction. Nanoscale, 2013, 5, 10839.	2.8	75
179	Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic–organic hybrid film. Electrochemistry Communications, 2007, 9, 1530-1535.	2.3	73
180	Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding. Analytical Chemistry, 2012, 84, 327-333.	3.2	73

#	Article	IF	CITATIONS
181	Titanium Nitride Nanocrystals on Nitrogenâ€Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry - A European Journal, 2013, 19, 14781-14786.	1.7	73
182	\hat{l}_{\pm} - and \hat{l}^3 -Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. Science China Materials, 2015, 58, 683-692.	3.5	73
183	Flawed MoO ₂ belts transformed from MoO ₃ on a graphene template for the hydrogen evolution reaction. Nanoscale, 2015, 7, 7040-7044.	2.8	73
184	Tungsten nitride nanocrystals on nitrogen-doped carbon black as efficient electrocatalysts for oxygen reduction reactions. Chemical Communications, 2015, 51, 572-575.	2.2	72
185	Highâ€Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous Fe <i>_x</i> P Coating Fe ₂ N Supported on Reduced Graphene Oxide. Small, 2018, 14, e1801717.	5.2	72
186	Preparation and aggregate state regulation of co-assembly graphene oxide-porphyrin composite Langmuir films via surface-modified graphene oxide sheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124023.	2.3	71
187	Hemoglobin entrapped within a layered spongy Co3O4 based nanocomposite featuring direct electron transfer and peroxidase activity. Journal of Materials Chemistry, 2007, 17, 1427.	6.7	70
188	\hat{l}^2 -Cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires. Chemical Physics Letters, 2004, 389, 14-18.	1.2	69
189	High surface area nanoporous platinum: facile fabrication and electrocatalytic activity. Nanotechnology, 2006, 17, 2167-2173.	1.3	69
190	Hollow Porous LiMn ₂ O ₄ Microcubes as Rechargeable Lithium Battery Cathode with High Electrochemical Performance. Small, 2012, 8, 858-862.	5.2	69
191	Efficient Analysis of Non-Polar Environmental Contaminants by MALDI-TOF MS with Graphene as Matrix. Journal of the American Society for Mass Spectrometry, 2011, 22, 1294-1298.	1.2	68
192	SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm, 2012, 14, 5177.	1.3	67
193	Porous, self-supported Ni3S2â^•Ni nanoarchitectured electrode operating through efficient lithium-driven conversion reactions. Applied Physics Letters, 2007, 90, 143107.	1.5	65
194	Construction of Plasmonic Nanoâ€Biosensorâ€Based Devices for Pointâ€ofâ€Care Testing. Small Methods, 2017, 1, 1700197.	4.6	65
195	Digital quantification of miRNA directly in plasma using integrated comprehensive droplet digital detection. Lab on A Chip, 2015, 15, 4217-4226.	3.1	64
196	Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem, 2020, 7, 3578-3589.	1.7	63
197	Controllable Self-Assembly of CdTe/Poly(N-isopropylacrylamideâ^acrylic acid) Microgels in Response to pH Stimuli. Langmuir, 2006, 22, 528-531.	1.6	62
198	Carbon-Coated Macroporous Sn ₂ P ₂ O ₇ as Anode Materials for Li-lon Battery. Journal of Physical Chemistry C, 2008, 112, 14216-14219.	1.5	62

#	Article	IF	CITATIONS
199	Polyhedral AgBr Microcrystals with an Increased Percentage of Exposed {111} Facets as a Highly Efficient Visibleâ€Light Photocatalyst. Chemistry - A European Journal, 2012, 18, 4620-4626.	1.7	62
200	Reversible control of cell membrane receptor function using DNA nano-spring multivalent ligands. Chemical Science, 2017, 8, 7098-7105.	3.7	62
201	Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: Fabrication and electrochemical performance. Journal of Solid State Chemistry, 2009, 182, 1055-1060.	1.4	61
202	Label-Free Nanopore Proximity Bioassay for Platelet-Derived Growth Factor Detection. Analytical Chemistry, 2015, 87, 5677-5682.	3.2	61
203	Graphene-based electrode materials for microbial fuel cells. Science China Materials, 2015, 58, 496-509.	3.5	60
204	Label-Free Nanopore Biosensor for Rapid and Highly Sensitive Cocaine Detection in Complex Biological Fluids. ACS Sensors, 2017, 2, 227-234.	4.0	60
205	An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. Biosensors and Bioelectronics, 2010, 25, 2436-2441.	5.3	59
206	Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications. Talanta, 2008, 75, 447-454.	2.9	58
207	Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst, The, 2016, 141, 4541-4553.	1.7	58
208	Al2O3-coated SnO2/TiO2 composite electrode for the dye-sensitized solar cell. Electrochimica Acta, 2005, 50, 2583-2589.	2.6	57
209	Microfluidic systems for rapid antibiotic susceptibility tests (ASTs) at the single-cell level. Chemical Science, 2020, 11, 6352-6361.	3.7	57
210	Ultrasound Controlled Antiâ€Inflammatory Polarization of Platelet Decorated Microglia for Targeted Ischemic Stroke Therapy. Angewandte Chemie - International Edition, 2021, 60, 5083-5090.	7.2	56
211	The electrochemical study of oxidation-reduction properties of horseradish peroxidase. Journal of Electroanalytical Chemistry, 1997, 431, 19-22.	1.9	55
212	Assembly of quantum dots-mesoporous silicate hybrid material for protein immobilization and direct electrochemistry. Biosensors and Bioelectronics, 2007, 23, 695-700.	5.3	55
213	Nanomaterials in carbohydrate biosensors. TrAC - Trends in Analytical Chemistry, 2014, 58, 54-70.	5.8	55
214	Cas9 cleavage assay for pre-screening of sgRNAs using nicking triggered isothermal amplification. Chemical Science, 2016, 7, 4951-4957.	3.7	55
215	Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer. Electrochimica Acta, 2008, 53, 3050-3055.	2.6	54
216	Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Science Advances, 2022, 8, eabm8433.	4.7	54

#	Article	IF	CITATIONS
217	Ultrahigh-efficiency photocatalysts based on mesoporous Pt–WO3 nanohybrids. Physical Chemistry Chemical Physics, 2013, 15, 6773.	1.3	53
218	CdTe nanocrystals sensitized chemiluminescence and the analytical application. Talanta, 2009, 77, 1050-1056.	2.9	52
219	Luminescent CdTe quantum dots and nanorods as metal ion probes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 267-271.	2.3	51
220	Organic–inorganic composites based on room temperature ionic liquid and 12-phosphotungstic acid salt with high assistant catalysis and proton conductivity. Journal of Power Sources, 2006, 158, 103-109.	4.0	51
221	Photoelectrochemical study of organic–inorganic hybrid thin films via electrostatic layer-by-layer assembly. Electrochemistry Communications, 2007, 9, 2151-2156.	2.3	51
222	Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor. Nanoscale, 2014, 6, 11196-11203.	2.8	51
223	New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system. Journal of Materials Chemistry, 2011, 21, 3485.	6.7	50
224	Room-temperature ionic liquids as media to enhance the electrochemical stability of self-assembled monolayers of alkanethiols on gold electrodes. Chemical Communications, 2005, , 360.	2.2	49
225	Hybrid Mechanoresponsive Polymer Wires Under Force Activation. Advanced Materials, 2013, 25, 1729-1733.	11.1	49
226	Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure. Nano Energy, 2018, 43, 359-367.	8.2	49
227	The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods. Thin Solid Films, 2007, 515, 4085-4091.	0.8	48
228	Rolling circle amplification for single cell analysis and in situ sequencing. TrAC - Trends in Analytical Chemistry, 2019, 121, 115700.	5.8	48
229	A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens <i>via</i> light-up RNA aptamers. Chemical Communications, 2019, 55, 10096-10099.	2.2	47
230	Precise Subcellular Organelle Targeting for Boosting Endogenousâ€Stimuliâ€Mediated Tumor Therapy. Advanced Materials, 2021, 33, e2101572.	11.1	47
231	Supported phospholipid membranes: comparison among different deposition methods for a phospholipid monolayer. Journal of Electroanalytical Chemistry, 1996, 416, 105-112.	1.9	46
232	Fabrication of an electrochemical platform based on the self-assembly of graphene oxide–multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis. Nanotechnology, 2011, 22, 494010.	1.3	45
233	Sucroseâ€Assisted Loading of LiFePO ₄ Nanoparticles on Graphene for Highâ€Performance Lithiumâ€Ion Battery Cathodes. Chemistry - A European Journal, 2013, 19, 5631-5636.	1.7	45
234	Co ₃ O ₄ Hollow Polyhedrons as Bifunctional Electrocatalysts for Reduction and Evolution Reactions of Oxygen. Particle and Particle Systems Characterization, 2016, 33, 887-895.	1.2	45

#	Article	IF	CITATIONS
235	Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode. Applied Physics Letters, 2006, 89, 263902.	1.5	44
236	Self-Assembly of Ordered 3D Pd Nanospheres at a Liquid/Liquid Interface. Journal of Physical Chemistry B, 2005, 109, 1108-1112.	1.2	43
237	A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells. Electrochemistry Communications, 2007, 9, 2755-2759.	2.3	43
238	Differential pulse anodic stripping voltammetry detection of metallothionein at bismuth film electrodes. Talanta, 2006, 69, 1162-1165.	2.9	42
239	Visible-Light Induced Photocatalytic Activity of Electrospun-TiO ₂ in Arsenic(III) Oxidation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 511-518.	4.0	42
240	Porous Nanobimetallic Fe–Mn Cubes with High Valent Mn and Highly Efficient Removal of Arsenic(III). ACS Applied Materials & Diterfaces, 2017, 9, 14868-14877.	4.0	42
241	Controllable Synthesis and Enhanced Electrochemical Properties of Multifunctional AucoreCo3O4shellNanocubes. Journal of Physical Chemistry B, 2006, 110, 24305-24310.	1.2	41
242	Temperature dependant self-assembly of surfactant Brij 76 in room temperature ionic liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273, 24-28.	2.3	41
243	Electrochemical behaviors and spectral studies of ionic liquid (1-butyl-3-methylimidazolium) Tj ETQq1 1 0.784314 243-248.	rgBT /Ove 1.9	erlock 10 Tf 41
244	RNA Splicing Analysis: From InÂVitro Testing to Single-Cell Imaging. CheM, 2019, 5, 2571-2592.	5.8	41
245	Neutrophil Delivered Hollow Titania Covered Persistent Luminescent Nanosensitizer for Ultrosound Augmented Chemo/Immuno Glioblastoma Therapy. Advanced Science, 2021, 8, e2004381.	5.6	41
246	Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 171-175.	2.3	40
247	Reversible Immobilization and Direct Electron Transfer of Cytochromeâ€c on a pH-Sensitive Polymer Interface. Chemistry - A European Journal, 2007, 13, 2847-2853.	1.7	40
248	High performance binderless TiO2 nanowire arrays electrode for lithium-ion battery. Applied Physics Letters, 2009, 95, 113102.	1.5	40
249	Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosensors and Bioelectronics, 2021, 185, 113262.	5.3	40
250	Lighting up single-nucleotide variation <i>in situ</i> in single cells and tissues. Chemical Society Reviews, 2020, 49, 1932-1954.	18.7	40
251	Assembly of multilayer films containing iron(III)-substituted Dawson-type heteropolyanions and its electrocatalytic properties: cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis spectrometry. Analytica Chimica Acta, 2003, 486, 85-92.	2.6	39
252	DNAâ^'Hemoglobinâ^'Multiwalls Carbon Nanotube Hybrid Material with Sandwich Structure: Preparation, Characterization, and Application in Bioelectrochemistry. Journal of Physical Chemistry C, 2007, 111, 8655-8660.	1.5	39

#	Article	IF	Citations
253	A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate–protein interaction profiling and cell surface carbohydrate expression evaluation. Nanoscale, 2013, 5, 7349.	2.8	39
254	Substitution Boosts Charge Separation for High Solar-Driven Photocatalytic Performance. ACS Applied Materials & Driven Photocatalytic Performance. ACS Applied Photocatalytic Performance Pho	4.0	39
255	Surface Tailoring for Controlled Photoelectrochemical Properties:  Effect of Patterned TiO2Microarrays. Journal of Physical Chemistry C, 2007, 111, 13163-13169.	1.5	38
256	Facet-defined AgCl nanocrystals with surface-electronic-structure-dominated photoreactivities. Nano Energy, 2016, 19, 8-16.	8.2	38
257	One-step hydrothermal synthesis of fluorescent MXene-like titanium carbonitride quantum dots. Inorganic Chemistry Communication, 2019, 105, 151-157.	1.8	38
258	A Wide-Bandgap Semiconducting Polymer for Ultraviolet and Blue Light Emitting Diodes. Macromolecular Chemistry and Physics, 2003, 204, 2274-2280.	1.1	37
259	Amperometric Sensor for Hydroxylamine Based on Hybrid Nickel-Cobalt Hexacyanoferrate Modified Electrode. Electroanalysis, 2005, 17, 2190-2194.	1.5	37
260	Multiresponsive Rolling Circle Amplification for DNA Logic Gates Mediated by Endonuclease. Analytical Chemistry, 2014, 86, 7813-7818.	3.2	37
261	Highly reduced graphene oxide supported Pt nanocomposites as highly efficient catalysts for methanol oxidation. Chemical Communications, 2015, 51, 2418-2420.	2.2	37
262	Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin. Biosensors and Bioelectronics, 2015, 70, 404-410.	5.3	37
263	Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 19969-19973.	5.2	37
264	Aptamer-based Homogeneous Analysis for Food Control. Current Analytical Chemistry, 2020, 16, 4-13.	0.6	37
265	Immunosensors Based on Layer-by-Layer Self-Assembled Au Colloidal Electrode for the Electrochemical Detection of Antigen. Electroanalysis, 2004, 16, 757-764.	1.5	36
266	Poly(<i>N</i> â€isopropylacrylamide) Interfaces with Dissimilar Thermoâ€responsive Behavior for Controlling Ion Permeation and Immobilization. Advanced Functional Materials, 2007, 17, 3377-3382.	7.8	36
267	Arrest of Rolling Circle Amplification by Proteinâ€Binding DNA Aptamers. Chemistry - A European Journal, 2014, 20, 2420-2424.	1.7	36
268	Viologen-thiol self-assembled monolayers for immobilized horseradish peroxidase at gold electrode surface. Electrochimica Acta, 1997, 42, 961-967.	2.6	35
269	Layer-by-layer self-assembly aluminum Keggin ions/Prussian blue nanoparticles ultrathin films towards multifunctional sensing applications. Biosensors and Bioelectronics, 2007, 22, 2921-2925.	5.3	35
270	A carbon nanotubes assisted strategy for insulin detection and insulin proteolysis assay. Analytica Chimica Acta, 2009, 650, 49-53.	2.6	35

#	Article	IF	CITATIONS
271	Glycosylated aniline polymer sensor: Amine to imine conversion on protein–carbohydrate binding. Biosensors and Bioelectronics, 2013, 46, 183-189.	5.3	35
272	Carbon coated MnO@Mn ₃ N ₂ coreâ€"shell composites for high performance lithium ion battery anodes. Nanoscale, 2014, 6, 14697-14701.	2.8	35
273	SpliceRCA: <i>in Situ</i> Single-Cell Analysis of mRNA Splicing Variants. ACS Central Science, 2018, 4, 680-687.	5.3	35
274	Carbon Nanotubes/TiO ₂ Nanotubes Hybrid Supercapacitor. Journal of Nanoscience and Nanotechnology, 2007, 7, 3328-3331.	0.9	34
275	DNA Detection Using Plasmonic Enhanced Near-Infrared Photoluminescence of Gallium Arsenide. Analytical Chemistry, 2013, 85, 9522-9527.	3.2	33
276	pH-Dependent Evolution of Five-Star Gold Nanostructures: An Experimental and Computational Study. ACS Nano, 2013, 7, 2258-2265.	7.3	33
277	Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling. Biosensors and Bioelectronics, 2017, 89, 1013-1019.	5.3	33
278	Improvements in the Selectivity of Electrochemical Detectors for Liquid Chromatography and Flow Injection Analysis Using the Self-Assembledn-Alkanethiol Monolayer-Modified Au Electrode. Analytical Chemistry, 1996, 68, 2432-2436.	3.2	32
279	Interaction of brilliant cresyl blue and methylene green with DNA studied by spectrophotometric and voltammetric methods. Electroanalysis, 1996, 8, 803-807.	1.5	32
280	Layer-by-Layer Assembly Films and their Applications in Electroanalytical Chemistry. Current Analytical Chemistry, 2006, 2, 279-296.	0.6	32
281	Temperatureâ€Responsive Polymer/Carbon Nanotube Hybrids: Smart Conductive Nanocomposite Films for Modulating the Bioelectrocatalysis of NADH. Chemistry - A European Journal, 2012, 18, 3687-3694.	1.7	32
282	Selective electrochemical detection of dopamine using nitrogen-doped graphene/manganese monoxide composites. RSC Advances, 2015, 5, 85065-85072.	1.7	32
283	Nanopore-Based, Label-Free, and Real-Time Monitoring Assay for DNA Methyltransferase Activity and Inhibition. Analytical Chemistry, 2017, 89, 13252-13260.	3.2	32
284	Interfacial Engineering of SeO Ligands on Tellurium Featuring Synergistic Functionalities of Bond Activation and Chemical States Buffering toward Electrocatalytic Conversion of Nitrogen to Ammonia. Advanced Science, 2019, 6, 1901627.	5.6	32
285	In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light. Journal of Catalysis, 2020, 382, 212-227.	3.1	32
286	Interfaces Decrease the Alkaline Hydrogen-Evolution Kinetics Energy Barrier on NiCoP/Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Nano, 2022, 16, 11049-11058.	7.3	32
287	Direct colorimetric study on the interaction of Escherichia coli with mannose in polydiacetylene Langmuir–Blodgett films. Colloids and Surfaces B: Biointerfaces, 2003, 27, 209-213.	2.5	31
288	Nitrogen-doped graphene nanosheets as high efficient catalysts for oxygen reduction reaction. Science Bulletin, 2012, 57, 3065-3070.	1.7	31

#	Article	IF	Citations
289	A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines. Talanta, 2017, 167, 623-629.	2.9	31
290	Temperature-Robust DNAzyme Biosensors Confirming Ultralow Background Detection. ACS Sensors, 2018, 3, 2660-2666.	4.0	31
291	Electrochemistry in Carbonâ€based Quantum Dots. Chemistry - an Asian Journal, 2020, 15, 1214-1224.	1.7	31
292	Rolling Circle Amplification-Assisted Flow Cytometry Approach for Simultaneous Profiling of Exosomal Surface Proteins. ACS Sensors, 2021, 6, 3611-3620.	4.0	31
293	Electrochemical and Raman Studies of the Biointeraction betweenEscherichiacoliand Mannose in Polydiacetylene Derivative Supported on the Self-Assembled Monolayers of Octadecanethiol on a Gold Electrode. Analytical Chemistry, 2002, 74, 6349-6354.	3.2	30
294	Functionalized polydiacetylene-glycolipid vesicles interacted with Escherichia coli under the TiO2 colloid. Colloids and Surfaces B: Biointerfaces, 2005, 40, 137-142.	2.5	30
295	Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges. Nano Research, 2015, 8, 2946-2953.	5.8	30
296	Highly Efficient AuPd/Carbon Nanotube Nanocatalysts for the Electroâ€Fenton Process. Chemistry - A European Journal, 2015, 21, 7611-7620.	1.7	30
297	Heating Treated Carbon Nanotubes As Highly Active Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 2015, 154, 177-183.	2.6	30
298	2 D Hybrid of Ni‣DH Chips on Carbon Nanosheets as Cathode of Zinc–Air Battery for Electrocatalytic Conversion of O ₂ into H ₂ O ₂ . ChemSusChem, 2020, 13, 1496-1503.	3.6	30
299	Interfacial Functionalization of TiO2 with Smart Polymers: pH-Controlled Switching of Photocurrent Direction. Journal of Physical Chemistry C, 2010, 114, 10478-10483.	1.5	29
300	A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection. Analytical Methods, 2016, 8, 7040-7046.	1.3	29
301	The Inherent Capacitive Behavior of Imidazolium-based Room-Temperature Ionic Liquids at Carbon Paste Electrode. Electrochemical and Solid-State Letters, 2005, 8, J17.	2.2	28
302	Li-driven electrochemical properties of WO3nanorods. Nanotechnology, 2006, 17, 3116-3120.	1.3	28
303	Direct Exfoliation of Graphite to Graphene by a Facile Chemical Approach. Small, 2014, 10, 2233-2238.	5.2	28
304	Recognition-Enhanced Metastably Shielded Aptamer for Digital Quantification of Small Molecules. Analytical Chemistry, 2018, 90, 14347-14354.	3.2	28
305	<i>trans</i> Singleâ€Stranded DNA Cleavage via CRISPR/Cas14a1 Activated by Target RNA without Destruction. Angewandte Chemie - International Edition, 2021, 60, 24241-24247.	7. 2	28
306	The ion selectivity of monensin incorporated phospholipid/alkanethiol bilayers. Journal of Electroanalytical Chemistry, 1996, 414, 17-21.	1.9	27

#	Article	IF	CITATIONS
307	Multiple-targeted graphene-based nanocarrier for intracellular imaging of mRNAs. Analytica Chimica Acta, 2017, 983, 1-8.	2.6	27
308	Ideal design of air electrode—A step closer toward robust rechargeable Zn–air battery. APL Materials, 2020, 8, .	2.2	27
309	Comparison of two-typed (3-mercaptopropyl)trimethoxysilane-based networks on Au substrates. Talanta, 2005, 65, 481-488.	2.9	26
310	Site-specific DNA cleavage of EcoRI endounclease probed by electrochemical analysis using ferrocene capped gold nanoparticles as reporter. Electrochemistry Communications, 2007, 9, 1086-1090.	2.3	26
311	Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles. Talanta, 2010, 83, 162-166.	2.9	26
312	Labelâ€Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells. Angewandte Chemie - International Edition, 2015, 54, 13576-13580.	7.2	26
313	Emerging Applications of Nanotechnology for Controlling Cellâ€Surface Receptor Clustering. Angewandte Chemie, 2019, 131, 4840-4849.	1.6	26
314	K+ sensors based on supported alkanethiol/phospholipid bilayers. Thin Solid Films, 1997, 293, 153-158.	0.8	25
315	A Generalized Equivalent-Circuit Model for Electroactive Monolayers Exhibiting a Fixed Redox Potential and a Distribution of Electron-Transfer Rate Constants I. Square Distributions. Journal of the Electrochemical Society, 2000, 147, 4584.	1.3	25
316	Single-Molecule Analysis of Human Telomere Sequence Interactions with G-quadruplex Ligand. Analytical Chemistry, 2016, 88, 4533-4540.	3.2	25
317	Tailoring oxygen vacancy on Co3O4 nanosheets with high surface area for oxygen evolution reaction. Chinese Journal of Chemical Physics, 2018, 31, 517-522.	0.6	25
318	Self-assembly of 4-ferrocene thiophenol capped electroactive gold nanoparticles onto gold electrode. Surface Science, 2003, 522, 105-111.	0.8	24
319	lonic Liquid Assisted Electrospun Cellulose Acetate Fibers for Aqueous Removal of Triclosan. Langmuir, 2015, 31, 1820-1827.	1.6	24
320	Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of Colloidal Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
321	IrO2/SnO2 electrodes: prepared by sol–gel process and their electrocatalytic for pyrocatechol. Acta Materialia, 2004, 52, 721-727.	3.8	23
322	Electrochemical Behavior of $\langle I \rangle \hat{I} \pm \langle I \rangle$ -MoO $\langle SUB \rangle 3 \langle SUB \rangle$ Nanorods as Cathode Materials for Rechargeable Lithium Batteries. Journal of Nanoscience and Nanotechnology, 2006, 6, 2117-2122.	0.9	23
323	Synthesis, characterization, electrochemistry and optical properties of a novel phenanthrenequinone― <i>alt</i> å€dialkylfluorene conjugated copolymer. Polymer International, 2007, 56, 1507-1513.	1.6	23
324	Pyrenebutyrate-functionalized graphene/poly(3-octyl-thiophene) nanocomposites based photoelectrochemical cell. Journal of Electroanalytical Chemistry, 2011, 656, 269-273.	1.9	23

#	Article	IF	Citations
325	In–situ Molten Salt Template Strategy for Hierarchical 3D Porous Carbon from Palm Shells as Advanced Electrochemical Supercapacitors. ChemistrySelect, 2016, 1, 2167-2173.	0.7	23
326	Tunable stiffness of graphene oxide/polyacrylamide composite scaffolds regulates cytoskeleton assembly. Chemical Science, 2018, 9, 6516-6522.	3.7	22
327	Ultrasmall Au nanoclusters for bioanalytical and biomedical applications: the undisclosed and neglected roles of ligands in determining the nanoclusters' catalytic activities. Nanoscale Horizons, 2020, 5, 1355-1367.	4.1	22
328	CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinase. Science China Chemistry, 2020, 63, 1012-1018.	4.2	22
329	Electroactive gold nanoparticles protected by 4-ferrocene thiophenol monolayer. Journal of Colloid and Interface Science, 2003, 264, 109-113.	5.0	21
330	Prototype of immunochromatographic assay strips using colloidal CdTe nanocrystals as biological luminescent label. Colloids and Surfaces B: Biointerfaces, 2005, 40, 179-182.	2.5	21
331	Singleâ€Cell Imaging of m ⁶ A Modified RNA Using m ⁶ Aâ€Specific In Situ Hybridization Mediated Proximity Ligation Assay (m ⁶ AlSHâ€PLA). Angewandte Chemie - International Edition, 2021, 60, 22646-22651.	7.2	21
332	Influence of the binder on the electron transport in the dye-sensitized TiO2 electrode. Thin Solid Films, 2005, 484, 346-351.	0.8	20
333	Energy harvesting from enzymatic biowaste reaction through polyelectrolyte functionalized 2D nanofluidic channels. Chemical Science, 2016, 7, 3645-3648.	3.7	20
334	Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell. RSC Advances, 2017, 7, 11959-11968.	1.7	20
335	Mannose–Escherichia coli interaction in the presence of metal cations studied in vitro by colorimetric polydiacetylene/glycolipid liposomes. Journal of Inorganic Biochemistry, 2004, 98, 925-930.	1.5	19
336	Electrochemiluminescence from Ru(bpy)32+ immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)–poly(vinyl alcohol) composite films. Analytica Chimica Acta, 2009, 632, 163-167.	2.6	19
337	Self-Phosphorylating Deoxyribozyme Initiated Cascade Enzymatic Amplification for Guanosine-5′-triphosphate Detection. Analytical Chemistry, 2014, 86, 7907-7912.	3.2	19
338	RNA splicing process analysis for identifying antisense oligonucleotide inhibitors with padlock probe-based isothermal amplification. Chemical Science, 2017, 8, 5692-5698.	3.7	19
339	Single-cell study of the extracellular matrix effect on cell growth by <i>in situ</i> imaging of gene expression. Chemical Science, 2017, 8, 8019-8024.	3.7	19
340	Direct electrochemistry and electrocatalysis of myoglobin covalently immobilized in mesopores cellular foams. Biosensors and Bioelectronics, 2010, 26, 846-849.	5.3	18
341	Formation of a graphene oxide–DNA duplex-based logic gate and sensor mediated by RecA–ssDNA nucleoprotein filaments. Chemical Communications, 2013, 49, 9971.	2.2	18
342	Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process. Journal of Hazardous Materials, 2022, 422, 126974.	6.5	18

#	Article	IF	CITATIONS
343	Electrochemical study of the interfacial characteristics of redox-active viologen thiol self-assembled monolayers. Thin Solid Films, 1997, 293, 200-205.	0.8	17
344	Unique structure and photoluminescence of Au/CdTe nanostructure materialsElectronic supplementary information (ESI) available: photoluminescence and UV-Vis spectra of Au nanoparticles, and XRD spectra of CdTe nanocrystals and Au/CdTe. See http://www.rsc.org/suppdata/cc/b3/b314664b/. Chemical Communications, 2004, , 982.	2.2	17
345	Platinum–polyaniline nanofilms synthesized at a liquid liquid interface with enhanced conductivity. Journal of Electroanalytical Chemistry, 2005, 577, 137-144.	1.9	17
346	Crystalline Vanadium Pentoxide with Hierarchical Mesopores and Its Capacitive Behavior. Chemistry - an Asian Journal, 2006, 1, 701-706.	1.7	17
347	Porous cobalt oxide nanowires: Notable improved gas sensing performances. Science Bulletin, 2012, 57, 4019-4023.	1.7	17
348	DNAâ€Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds. Angewandte Chemie, 2015, 127, 8232-8236.	1.6	17
349	Cas 12a-Activated Universal Field-Deployable Detectors for Bacterial Diagnostics. ACS Omega, 2020, 5, 14814-14821.	1.6	17
350	Y-Shaped Circular Aptamer–DNAzyme Conjugates for Highly Efficient in Vivo Gene Silencing. CCS Chemistry, 2020, 2, 631-641.	4.6	17
351	Synthesis of N-(n-octyl)-N′-(10-mercaptodecyl)-4,4′-bipyridinium dibromide and electrochemical behaviour of its monolayers on a gold electrode. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1001-1006.	1.7	16
352	Electrochemical study of interactions between DNA and viologen-thiol self-assembled monolayers. Electroanalysis, 1997, 9, 834-837.	1.5	16
353	Self-Assembled Monolayers of Novel Surface-Bound Dendrons: Peripheral Structure Determines Surface Organization. Chemistry - A European Journal, 2003, 9, 2331-2336.	1.7	16
354	Effect of methylsisesquioxane filler on the properties of ionic liquid based polymer electrolyte. Polymer, 2005, 46, 7578-7584.	1.8	16
355	Trypsin-Amplified Aerolysin Nanopore Amplified Sandwich Assay for Attomolar Nucleic Acid and Single Bacteria Detection. Analytical Chemistry, 2019, 91, 14043-14048.	3.2	16
356	Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. Journal of Controlled Release, 2022, 342, 210-227.	4.8	16
357	Electrochemical Reactions in Subfemtoliter-Droplets Studied with Plasmonics-Based Electrochemical Current Microscopy. Analytical Chemistry, 2015, 87, 494-498.	3.2	15
358	2D Gelatin Methacrylate Hydrogels with Tunable Stiffness for Investigating Cell Behaviors. ACS Applied Bio Materials, 2019, 2, 570-576.	2.3	15
359	Intrinsic Conformation-Induced Fluorescence Resonance Energy Transfer Aptasensor. ACS Applied Bio Materials, 2020, 3, 2553-2559.	2.3	15
360	Automated Nanoparticle Analysis in Surface Plasmon Resonance Microscopy. Analytical Chemistry, 2021, 93, 7399-7404.	3.2	15

#	Article	IF	CITATIONS
361	A netlike DNA-templated Au nanoconjugate as the matrix of the direct electrochemistry of horseradish peroxidase. Electrochemistry Communications, 2009, 11, 327-330.	2.3	14
362	Electrochemical impedance probing of transcriptional TATA binding protein based on TATA box site-specific binding. Electrochemistry Communications, 2009, 11, 2101-2104.	2.3	14
363	Dynamic single-molecule sensing by actively tuning binding kinetics for ultrasensitive biomarker detection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120379119.	3.3	14
364	Formation of Selfâ€Assembled Monolayers on Gold Electrodes with Inclusion Complexes of Cyclodextrins and Viologens. Journal of the Electrochemical Society, 1997, 144, 3858-3865.	1.3	13
365	Identification of o-phenylenediamine polymerization product catalyzed by cytochrome c. Journal of Molecular Catalysis B: Enzymatic, 1998, 4, 33-39.	1.8	13
366	Preparation, characterization and quantized capacitance of 3-mercapto-1,2-propanediol monolayer protected gold nanoparticles. Chemical Physics Letters, 2003, 372, 668-673.	1.2	13
367	Enhanced affinochromism of polydiacetylene monolayer in response to bacteria by incorporating CdS nano-crystallites. Colloids and Surfaces B: Biointerfaces, 2004, 35, 41-44.	2.5	13
368	Synthesis and ionic conductivity of polymeric ion gel containing room temperature ionic liquid and phosphotungstic acid. Solid State Ionics, 2006, 177, 1281-1286.	1.3	13
369	Electrochemical DNA Sensors: From Nanoconstruction to Biosensing. Current Organic Chemistry, 2011, 15, 506-517.	0.9	13
370	AgBr Nanocrystals from Plates to Cubes and Their Photocatalytic Properties. ChemCatChem, 2013, 5, 1426-1430.	1.8	13
371	Sulfur defect-rich WS2â^'x nanosheet electrocatalysts for N2 reduction. Science China Materials, 2021, 64, 1910-1918.	3.5	13
372	Incorporating Oxygen Atoms in a SnS ₂ Atomic Layer to Simultaneously Stabilize Atomic Hydrogen and Accelerate the Generation of Hydroxyl Radicals for Water Decontamination. Environmental Science & Environmental S	4.6	13
373	Preparation and the investigation of its electrochemical and photoluminescent characteristics of organic–inorganic hybrid multilayers containing europium-substituted heteropolytungstate. Talanta, 2004, 63, 927-931.	2.9	12
374	Semipermeable membrane embodying noble metal nanoparticles and its electrochemical behaviors. Journal of Electroanalytical Chemistry, 2005, 579, 277-282.	1.9	12
375	Fréchet-type dendrons-capped gold clusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 255-259.	2.3	12
376	Preparation of CdTe nanocrystals and CdTe/SiO2 nanocomposites in glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 329-332.	2.3	12
377	"Green" Synthesis of Size Controllable Prussian Blue Nanoparticles Stabilized by Soluble Starch. Journal of Nanoscience and Nanotechnology, 2007, 7, 4557-4561.	0.9	12
378	Metal chelate affinity to immobilize horseradish peroxidase on functionalized agarose/CNTs composites for the detection of catechol. Science China Chemistry, 2011, 54, 1319-1326.	4.2	12

#	Article	IF	CITATIONS
379	Charge Transfer Kinetics from Surface Plasmon Resonance Voltammetry. Analytical Chemistry, 2014, 86, 3882-3886.	3.2	12
380	Ferric phosphide carbon nanocomposites emerging as highly active electrocatalysts for the hydrogen evolution reaction. Dalton Transactions, 2018, 47, 16011-16018.	1.6	12
381	Manipulation of Neighboring Palladium and Mercury Atoms for Efficient *OH Transformation in Anodic Alcohol Oxidation and Cathodic Oxygen Reduction Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12677-12685.	4.0	12
382	Surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate. Science in China Series B: Chemistry, 2005, 48, 424.	0.8	11
383	Palladium Nanoparticles-Decorated Graphene Nanosheets as Highly Regioselective Catalyst for Cyclotrimerization Reaction. Journal of Nanoscience and Nanotechnology, 2011, 11, 5159-5168.	0.9	11
384	Tuned chromic process for polydiacetylenes vesicles: the influence of polymer matrices. Soft Matter, 2011, 7, 6529.	1.2	11
385	A mechanical actuated SnO ₂ nanowire for small molecules sensing. Chemical Communications, 2013, 49, 1017-1019.	2.2	11
386	Singleâ€Cell Visualization of Monogenic RNA Gâ€quadruplex and Occupied Gâ€quadruplex Ratio through a Moduleâ€Assembled Multifunctional Probes Assay (MAMPA). Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
387	Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks. Journal of Power Sources, 2008, 182, 334-339.	4.0	10
388	Label-Free Imaging of Histamine Mediated G Protein-Coupled Receptors Activation in Live Cells. Analytical Chemistry, 2016, 88, 11498-11503.	3.2	10
389	Graphene–nucleic acid biointerface-engineered biosensors with tunable dynamic range. Journal of Materials Chemistry B, 2020, 8, 3623-3630.	2.9	10
390	Botulinum toxin as an ultrasensitive reporter for bacterial and SARS-CoV-2 nucleic acid diagnostics. Biosensors and Bioelectronics, 2021, 176, 112953.	5. 3	10
391	Electrografted Poly(<i>N</i> à€mercaptoethyl acrylamide) and Au Nanoparticlesâ€Based Organic/Inorganic Film: A Platform for the Highâ€Performance Electrochemical Biosensors. Chemistry - an Asian Journal, 2010, 5, 919-924.	1.7	9
392	Microstructure and Gas-Sensing Property of the Ordered Mesoporous Co ₃ O ₄ . Journal of Nanoscience and Nanotechnology, 2013, 13, 864-868.	0.9	9
393	Porous SnO ₂ nanocubes with controllable pore volume and their Li storage performance. RSC Advances, 2014, 4, 13250-13255.	1.7	9
394	Optical Imaging of Charges with Atomically Thin Molybdenum Disulfide. ACS Nano, 2019, 13, 2298-2306.	7.3	9
395	Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs). Nature Communications, 2020, 11, 5496.	5.8	9
396	Self-assembled monolayers of 1-(2-cyanoethyl)pyrrole on gold electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 149-154.	2.3	8

#	Article	IF	Citations
397	Label-free imaging of epidermal growth factor receptor-induced response in single living cells. Analyst, The, 2018, 143, 5264-5270.	1.7	8
398	Peptide-modified nanochannel system for carboxypeptidase B activity detection. Analytica Chimica Acta, 2019, 1057, 36-43.	2.6	8
399	Single Particle Hopping as an Indicator for Evaluating Electrocatalysts. Nano Letters, 2022, 22, 5495-5502.	4.5	8
400	Use of atomic force microscopy for imaging the initial stage of the nucleation of calcium phosphate in Langmuir–blodgett films of stearic acid. Thin Solid Films, 2004, 468, 273-279.	0.8	7
401	Influence of configuration of carboxylic acid capping ligands on the salt-induced aggregation of gold clusters. Journal of Colloid and Interface Science, 2005, 283, 440-445.	5.0	7
402	Controllable synthesis of well-ordered TiO2 nanotubes in a mixed organic electrolyte for high-efficiency photocatalysis. Science China Chemistry, 2012, 55, 2373-2380.	4.2	7
403	Highly sensitive electrogenerated chemiluminescence biosensor for galactosyltransferase activity and inhibition detection using gold nanorod and enzymatic dual signal amplification. Journal of Electroanalytical Chemistry, 2016, 781, 83-89.	1.9	7
404	Solid-phase microextraction of volatile organic compounds in headspace of PM-induced MRC-5 cell lines. Talanta, 2018, 185, 23-29.	2.9	7
405	<i>trans</i> > Singleâ€Stranded DNA Cleavage via CRISPR/Cas14a1 Activated by Target RNA without Destruction. Angewandte Chemie, 2021, 133, 24443-24449.	1.6	7
406	Fluorescent and Opt-Electric Recording Bacterial Identification Device for Ultrasensitive and Specific Detection of Microbials. ACS Sensors, 2021, 6, 443-449.	4.0	7
407	Preparation and Bioelectrochemical Application of Gold Nanoparticles-Chitosan-Graphene Nanomaterials. Acta Chimica Sinica, 2012, 70, 2213.	0.5	7
408	Electroactive coatings of dicyano-bis(1,10-phenanthroline)iron(II) attached to Nafion polymer film modified electrodes via adsorption. Electroanalysis, 1995, 7, 742-745.	1.5	6
409	Interfacial characteristics of the self-assembly system of poly-l-lysine 3-mercaptopropionic acid bgold electrode. Journal of Electroanalytical Chemistry, 1997, 431, 227-230.	1.9	6
410	Electrochemical Determination of NDPhA via its Electrocatalysis at Porous Au Electrode in Room Temperature Ionic Liquid. Electroanalysis, 2008, 20, 2003-2008.	1.5	6
411	Low temperature synthesis of NiO/Co3O4 composite nanosheets as high performance Li-ion battery anode materials. Science Bulletin, 2012, 57, 4195-4198.	1.7	6
412	More stable structures lead to improved cycle stability in photocatalysis and Li-ion batteries. RSC Advances, 2013, 3, 7933.	1.7	6
413	Self-Supported Ferric Phosphide Spherical Clusters as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 9472-9478.	0.7	6
414	Construction of H2O2-responsive asymmetric 2D nanofluidic channels with graphene and peroxidase-mimetic V2O5 nanowires. Analytical and Bioanalytical Chemistry, 2019, 411, 4041-4048.	1.9	6

#	Article	IF	Citations
415	Driving Forces Sorted In Situ Sizeâ€Increasing Strategy for Enhanced Tumor Imaging and Therapy. Small Science, 2022, 2, .	5.8	6
416	Direct electrochemical identification of an activated intermediate formed by cytochrome C with hydrogen peroxide. Chemical Communications, 1996, , 51.	2.2	5
417	Probe beam deflection study of cupric hexacyanoferrate colloid doped polypyrrole film modified electrode in different electrolytes. Journal of Electroanalytical Chemistry, 1996, 407, 243-246.	1.9	5
418	Ni–Co Bimetallic Sulfide Coated with Reduced Graphene Oxide and Carbon for High-Capacitance Supercapacitor. Journal of Nanoscience and Nanotechnology, 2017, 17, 4091-4098.	0.9	5
419	Preparation of 1-Propyl-3-Methyl-Imidazolium Chloride Functionalized Organoclay for Protein Immobilization. Science of Advanced Materials, 2009, 1, 55-62.	0.1	5
420	Methodological advances of bioanalysis and biochemical targeting of intracellular Gâ \in quadruplexes. Exploration, 2022, 2, .	5.4	5
421	Triphenylmethanethiol: a novel rigid capping agent for gold nanoclusters. New Journal of Chemistry, 2003, 27, 498-501.	1.4	4
422	An Adaptive Backoff Algorithm for OFDMA Systems. , 2012, , .		4
423	Monitoring DNA conformation and charge regulations by plasmonic-based electrochemical impedance platform. Electrochemistry Communications, 2014, 45, 5-8.	2.3	4
424	One-Step Synthesis of MnO2 Flower/Carbon Nanotube with Improved Lithium Storage Properties. Journal of Nanoscience and Nanotechnology, 2015, 15, 2896-2901.	0.9	4
425	Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing. Journal of Nanoscience and Nanotechnology, 2015, 15, 4900-4907.	0.9	4
426	Biocompatible Phospholipid Modified Graphene Nanocomposite for Direct Electrochemistry of Redox Enzyme. Acta Chimica Sinica, 2014, 72, 388.	0.5	4
427	Dimerization of hydroxylated species of m-aminophenol by cytochrome c with hydrogen peroxide. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 475-482.	1.8	3
428	Multi-fluorescent dye-doped SiO2/lanthanide complexes hybrid particles. Materials Letters, 2006, 60, 1629-1633.	1.3	3
429	NANOSTRUCTURE PRESENTED CHEMILUMINESCENCE AND ELECTROCHEMILUMINESCENCE. Annual Review of Nano Research, 2008, , 63-101.	0.2	3
430	Chapter 7: Cell-Mimicking Supramolecular Assemblies Based on Polydiacetylene Lipids: Recent Development as "Smart―Materials for Colorimetric and Electrochemical Biosensing Devices. Behavior Research Methods, 2006, 4, 229-252.	2.3	2
431	Synthesis of Nanocrystalline TiO ₂ by a Salt-Leaching Assisted Sol–Gel Method and Their Photoelectrochemical Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 2456-2462.	0.9	2
432	Research frontiers of chemical detection and measurements. Pure and Applied Chemistry, 2021, 93, 1453-1461.	0.9	2

#	Article	IF	CITATIONS
433	A Versatile Route to Facile Synthesis of Various Hierarchical Structured Carbon-Based Nanocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 5723-5729.	0.9	1
434	Facile Synthesis of Magnesiated $\hat{l}\pm$ -MoO3 and Its Electrochemical Performance in Li-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 2839-2843.	0.9	1
435	Singleâ€Cell Imaging of m 6 A Modified RNA Using m 6 Aâ€Specific In Situ Hybridization Mediated Proximity Ligation Assay (m 6 AISHâ€PLA). Angewandte Chemie, 2021, 133, 22828.	1.6	1
436	Application of Graphene Based Nanomaterials in Enzymatic Electrochemical Biosensor. Chinese Journal of Analytical Chemistry, 2013, 41, 641.	0.9	1
437	Singleâ€Cell Visualization of Monogenic RNA Gâ€quadruplex and Occupied Gâ€quadruplex Ratio through a Moduleâ€Assembled Multifunctional Probes Assay (MAMPA). Angewandte Chemie, 2022, 134, e202111132.	1.6	1
438	Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of Colloidal Nanocrystals. Angewandte Chemie, 2022, 134, .	1.6	1
439	Force Sensors: Hybrid Mechanoresponsive Polymer Wires Under Force Activation (Adv. Mater. 12/2013). Advanced Materials, 2013, 25, 1658-1658.	11.1	0
440	Graphene-Based Electrochemical Biosensor. World Scientific Series on Carbon Nanoscience, 2014, , 147-188.	0.1	0
441	Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 198-210.	2.2	0
442	Ultrasound Controlled Antiâ€Inflammatory Polarization of Platelet Decorated Microglia for Targeted Ischemic Stroke Therapy. Angewandte Chemie, 2021, 133, 5143-5150.	1.6	0
443	Titelbild: Singleâ€Cell Imaging of m ⁶ A Modified RNA Using m ⁶ Aâ€Specific In Situ Hybridization Mediated Proximity Ligation Assay (m ⁶ AISHâ€PLA) (Angew. Chem. 42/2021). Angewandte Chemie, 2021, 133, 22769-22769.	1.6	0
444	<l>A Special Section on</l> Functional Nanomaterials for Energy Applications. Science of Advanced Materials, 2013, 5, 1581-1584.	0.1	0
445	Module Assembly Strategy for Singleâ€Cell Nucleic Acid Imaging at the Subâ€Molecule Level. Chemistry - A European Journal, 2022, , .	1.7	0
446	Bioanalysis. Current Analytical Chemistry, 2022, 18, 599-600.	0.6	0
447	Frontispiece: Module Assembly Strategy for Singleâ€Cell Nucleic Acid Imaging at the Subâ€Molecule Level. Chemistry - A European Journal, 2022, 28, .	1.7	0