

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2754134/publications.pdf Version: 2024-02-01

VALIII

#	Article	IF	CITATIONS
1	The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Molecular Cancer, 2019, 18, 17.	7.9	239
2	Research status of self-healing hydrogel for wound management: A review. International Journal of Biological Macromolecules, 2020, 164, 2108-2123.	3.6	151
3	An "Onâ€Site Transformation―Strategy for Treatment of Bacterial Infection. Advanced Materials, 2017, 29, 1703461.	11.1	140
4	Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. International Journal of Biological Macromolecules, 2020, 154, 433-445.	3.6	119
5	Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 128, 439-447.	2.5	106
6	Hydroxybutyl chitosan thermo-sensitive hydrogel: a potential drug delivery system. Journal of Materials Science, 2013, 48, 5614-5623.	1.7	90
7	Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydrate Polymers, 2017, 157, 596-602.	5.1	87
8	Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery. Carbohydrate Polymers, 2016, 136, 867-874.	5.1	83
9	Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomaterials Science, 2021, 9, 4523-4540.	2.6	80
10	Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. Journal of Materials Chemistry B, 2017, 5, 3172-3185.	2.9	78
11	Biomaterials based on N,N,N-trimethyl chitosan fibers in wound dressing applications. International Journal of Biological Macromolecules, 2016, 89, 471-476.	3.6	73
12	Inducing sustained release and improving oral bioavailability of curcumin via chitosan derivatives-coated liposomes. International Journal of Biological Macromolecules, 2018, 120, 702-710.	3.6	54
13	Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chemical Communications, 2015, 51, 1453-1456.	2.2	46
14	Mussel-inspired adhesive and polypeptide-based antibacterial thermo-sensitive hydroxybutyl chitosan hydrogel as BMSCs 3D culture matrix for wound healing. Carbohydrate Polymers, 2021, 261, 117878.	5.1	43
15	A thermosensitive hydroxybutyl chitosan hydrogel as a potential co-delivery matrix for drugs on keloid inhibition. Journal of Materials Chemistry B, 2016, 4, 3936-3944.	2.9	40
16	pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm. Journal of Materials Chemistry B, 2018, 6, 586-592.	2.9	40
17	The influence of solvent formulations on thermosensitive hydroxybutyl chitosan hydrogel as a potential delivery matrix for cell therapy. Carbohydrate Polymers, 2017, 170, 80-88.	5.1	38
18	Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydrate Polymers, 2016, 136, 860-866.	5.1	37

Ya Liu

#	Article	IF	CITATIONS
19	Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?. Acta Biomaterialia, 2021, 125, 1-28.	4.1	36
20	Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids and Surfaces B: Biointerfaces, 2016, 145, 492-501.	2.5	35
21	Self-assembled nanoparticles based on amphiphilic chitosan derivative and hyaluronic acid for gene delivery. Carbohydrate Polymers, 2013, 94, 309-316.	5.1	34
22	Applications of chitosan-based biomaterials: a focus on dependent antimicrobial properties. Marine Life Science and Technology, 2020, 2, 398-413.	1.8	34
23	Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomaterials Science, 2022, 10, 318-353.	2.6	34
24	Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydrate Polymers, 2020, 229, 115557.	5.1	32
25	Hydroxybutyl Chitosan Centered Biocomposites for Potential Curative Applications: A Critical Review. Biomacromolecules, 2020, 21, 1351-1367.	2.6	32
26	Chitosanâ€based selfâ€assembled nanomaterials: Their application in drug delivery. View, 2021, 2, 20200069.	2.7	31
27	Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery. Colloids and Surfaces B: Biointerfaces, 2016, 148, 147-156.	2.5	28
28	The green and stable dissolving system based on KOH/urea for homogeneous chemical modification of chitosan. International Journal of Biological Macromolecules, 2018, 120, 1103-1110.	3.6	27
29	Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control. International Journal of Biological Macromolecules, 2017, 105, 566-574.	3.6	23
30	Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 4774-4798.	2.6	23
31	In vitro evaluation of mucoadhesion and permeation enhancement of polymeric amphiphilic nanoparticles. Carbohydrate Polymers, 2012, 89, 453-460.	5.1	22
32	Preparation and characterization of mucosal adhesive and two-step drug releasing cetirizine-chitosan nanoparticle. Carbohydrate Polymers, 2017, 173, 600-609.	5.1	22
33	Nasal adaptive chitosan-based nano-vehicles for anti-allergic drug delivery. International Journal of Biological Macromolecules, 2019, 135, 1182-1192.	3.6	21
34	Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials, 2022, 282, 121434.	5.7	21
35	Chitosan-centered nanosystems as sustained therapeutics for allergic rhinitis intervention: Inhibition of histamine-induced cascades. Journal of Controlled Release, 2021, 335, 422-436.	4.8	17
36	Hydroxybutyl chitosan/ oxidized glucomannan self-healing hydrogels as BMSCs-derived exosomes carriers for advanced stretchable wounds. Applied Materials Today, 2022, 26, 101342.	2.3	14

Ya Liu

#	Article	IF	CITATIONS
37	Gastric environment-stable oral nanocarriers for in situ colorectal cancer therapy. International Journal of Biological Macromolecules, 2019, 139, 1035-1045.	3.6	12
38	Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Progress in Polymer Science, 2022, 131, 101578.	11.8	12
39	Bridging micro/nano-platform and airway allergy intervention. Journal of Controlled Release, 2022, 341, 364-382.	4.8	7
40	Nanosystems as curative platforms for allergic disorder management. Journal of Materials Chemistry B, 2021, 9, 1729-1744.	2.9	5
41	Peptide-based assemblies as immune checkpoint inhibitor delivery systems for enhanced immunotherapy. Applied Materials Today, 2021, 23, 101063.	2.3	2