
Xinjun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2754069/publications.pdf Version: 2024-02-01

XINILIN XII

#	Article	IF	CITATIONS
1	Enhancing the performance of organic solar cells by modification of cathode with a self-assembled monolayer of aromatic organophosphonic acid. Chinese Chemical Letters, 2023, 34, 107495.	4.8	2
2	Chlorination Enabling a Lowâ€Cost Benzodithiopheneâ€Based Wideâ€Bandgap Donor Polymer with an Efficiency of over 17%. Advanced Materials, 2022, 34, e2105483.	11.1	53
3	High-performance nonfused ring electron acceptor with a steric hindrance induced planar molecular backbone. Science China Chemistry, 2022, 65, 594-601.	4.2	33
4	A Versatile Planar Building Block with C _{2V} Symmetry for Highâ€Performance Nonâ€Halogenated Solvent Processable Polymer Donors. Advanced Energy Materials, 2022, 12, .	10.2	29
5	A simple high-performance fully nonfused ring electron acceptor with a planar molecular backbone. Chemical Engineering Journal, 2022, 444, 136472.	6.6	19
6	Random Terpolymer Enabling Highâ€Efficiency Organic Solar Cells Processed by Nonhalogenated Solvent with a Low Nonradiative Energy Loss. Advanced Functional Materials, 2022, 32, .	7.8	49
7	Molecular-Shape-Controlled Nonfused Ring Electron Acceptors for High-Performance Organic Solar Cells with Tunable Phase Morphology. ACS Applied Materials & Interfaces, 2022, 14, 28807-28815.	4.0	16
8	End-group modification of non-fullerene acceptors enables efficient organic solar cells. Journal of Materials Chemistry C, 2022, 10, 10389-10395.	2.7	8
9	Effect of Polymer Chain Regularity on the Photovoltaic Performance of Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 996-1002.	2.0	3
10	High-Performance Simple Nonfused Ring Electron Acceptors with Diphenylamino Flanking Groups. ACS Applied Materials & Interfaces, 2021, 13, 39652-39659.	4.0	47
11	Improving the Efficiency of Organic Solar Cells by Introducing Perylene Diimide Derivative as Third Component and Individually Dissolving Donor/Acceptor. ChemSusChem, 2021, 14, 5442-5449.	3.6	9
12	Effect of polymer molecular weight and processing solvent on the morphology and photovoltaic performance of inverted non-fullerene solar cells. Dyes and Pigments, 2021, 194, 109560.	2.0	3
13	Simple Nonfused Ring Electron Acceptors with 3D Network Packing Structure Boosting the Efficiency of Organic Solar Cells to 15.44%. Advanced Energy Materials, 2021, 11, 2102591.	10.2	111
14	High-efficiency ternary nonfullerene polymer solar cells with increased phase purity and reduced nonradiative energy loss. Journal of Materials Chemistry A, 2020, 8, 2123-2130.	5.2	29
15	High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability. Journal of Materials Chemistry A, 2020, 8, 22907-22917.	5.2	27
16	A Green Solvent Processable Wideâ€Bandgap Conjugated Polymer for Organic Solar Cells. Solar Rrl, 2020, 4, 2000547.	3.1	13
17	Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on 3,4-(2,2-Dihexylpropylenedioxy)thiophene. ACS Applied Materials & Interfaces, 2020, 12, 40590-40598.	4.0	18
18	Noncovalently Fused-Ring Electron Acceptors with <i>C</i> _{2<i>v</i>} Symmetry for Regulating the Morphology of Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 46220-46230.	4.0	43

Xinjun Xu

#	Article	IF	CITATIONS
19	Enhancing the Performance of Organic Solar Cells by Prolonging the Lifetime of Photogenerated Excitons. Advanced Materials, 2020, 32, e2003164.	11.1	42
20	Efficient Organic Solar Cells Based on Non-Fullerene Acceptors with Two Planar Thiophene-Fused Perylene Diimide Units. ACS Applied Materials & Interfaces, 2020, 12, 10746-10754.	4.0	23
21	Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nature Communications, 2019, 10, 3038.	5.8	297
22	Fluoro-Modulated Molecular Geometry in Diketopyrrolopyrrole-Based Low-Bandgap Copolymers for Tuning the Photovoltaic Performance. Frontiers in Chemistry, 2019, 7, 333.	1.8	3
23	Polymer solar cells based on spontaneously-spreading film with double electron-transporting layers. Organic Electronics, 2019, 69, 56-61.	1.4	7
24	Nonfullerene acceptors with a novel nonacyclic core for high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 3335-3341.	2.7	5
25	Controlling Molecular Packing and Orientation via Constructing a Ladder-Type Electron Acceptor with Asymmetric Substituents for Thick-Film Nonfullerene Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 3098-3106.	4.0	40
26	Using ternary blend as a strategy to improve the driving force for charge transfer and facilitate electron transport in polymer solar cells. Organic Electronics, 2019, 65, 419-425.	1.4	10
27	Fused pentacyclic electron acceptors with four <i>cis</i> -arranged alkyl side chains for efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 3724-3729.	5.2	27
28	High efficiency ternary polymer solar cells based on a fused pentacyclic electron acceptor. Journal of Materials Chemistry A, 2018, 6, 6854-6859.	5.2	16
29	The influence of the π-bridging unit of fused-ring acceptors on the performance of organic solar cells. Journal of Materials Chemistry A, 2018, 6, 21335-21340.	5.2	30
30	Enhancing the Performance of Non-Fullerene Organic Solar Cells Using Regioregular Wide-Bandgap Polymers. Macromolecules, 2018, 51, 8646-8651.	2.2	39
31	Enhance the performance of polymer solar cells via extension of the flanking end groups of fused ring acceptors. Science China Chemistry, 2018, 61, 1320-1327.	4.2	22
32	Nonfullerene Acceptors with Enhanced Solubility and Ordered Packing for High-Efficiency Polymer Solar Cells. ACS Energy Letters, 2018, 3, 1832-1839.	8.8	115
33	A propeller-shaped perylene diimide hexamer as a nonfullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 9336-9340.	2.7	28
34	Enhancing the Performance of Organic Solar Cells by Hierarchically Supramolecular Self-Assembly of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 4307-4312.	3.2	116
35	Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 3356-3359.	6.6	499
36	Simultaneous enhancement of the molecular planarity and the solubility of non-fullerene acceptors: effect of aliphatic side-chain substitution on the photovoltaic performance. Journal of Materials Chemistry A, 2017, 5, 7776-7783.	5.2	87

Xinjun Xu

#	Article	IF	CITATIONS
37	Hyperbranched polymer as an acceptor for polymer solar cells. Chemical Communications, 2017, 53, 537-540.	2.2	26
38	Fusedâ€Ring Acceptors with Asymmetric Side Chains for Highâ€Performance Thickâ€Film Organic Solar Cells. Advanced Materials, 2017, 29, 1703527.	11.1	238
39	Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33906-33912.	4.0	66
40	Non-fullerene small molecular acceptors with a carbazole core for organic solar cells with high open-circuit voltage. Dyes and Pigments, 2017, 146, 293-299.	2.0	17
41	Enhancing the Efficiency of Polymer Solar Cells by Incorporation of 2,5-Difluorobenzene Units into the Polymer Backbone via Random Copolymerization. ACS Applied Materials & Interfaces, 2017, 9, 23775-23781.	4.0	9
42	High efficiency polymer solar cells based on alkylthio substituted benzothiadiazole-quaterthiophene alternating conjugated polymers. Organic Electronics, 2017, 40, 36-41.	1.4	16
43	An effective way to reduce energy loss and enhance open-circuit voltage in polymer solar cells based on a diketopyrrolopyrrole polymer containing three regular alternating units. Journal of Materials Chemistry A, 2016, 4, 13265-13270.	5.2	41
44	Perspective of a new trend in organic photovoltaic: ternary blend polymer solar cells. Science China Materials, 2016, 59, 444-458.	3.5	37
45	Ternaryâ€Blend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance. Advanced Materials, 2016, 28, 9559-9566.	11.1	267