PrzemysÅ, aw B RadwaÅ, "ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2754009/publications.pdf

Version: 2024-02-01

623734 713466 27 450 14 21 citations h-index g-index papers 27 27 27 652 docs citations times ranked all docs citing authors

#	Article	IF	CITATIONS
1	Mutant D96V calmodulin induces unexpected remodeling of cardiac nanostructure and physiology. Journal of General Physiology, 2022, 154, .	1.9	О
2	Vascular endothelial growth factor promotes atrial arrhythmias by inducing acute intercalated disk remodeling. Scientific Reports, 2020, 10, 20463.	3.3	32
3	Multiscale, Multimodal Imaging of Structure and Function Reveals Mechanisms of Normal and Abnormal Cardiac Physiology. Microscopy and Microanalysis, 2020, 26, 836-837.	0.4	O
4	Tetrodotoxinâ€Sensitive Neuronalâ€Type Na ⁺ Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation. Journal of the American Heart Association, 2020, 9, e015119.	3.7	5
5	Super-Resolution Imaging Using a Novel High-Fidelity Antibody Reveals Close Association of the Neuronal Sodium Channel Na $<$ sub $>$ V $<$ /sub $>$ 1.6 with Ryanodine Receptors in Cardiac Muscle. Microscopy and Microanalysis, 2020, 26, 157-165.	0.4	16
6	The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of NaV1.5 and RyR2 function. Cell Calcium, 2019, 82, 102063.	2.4	34
7	Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease. Scientific Reports, 2019, 9, 10179.	3.3	33
8	Sodium channel clusters: harmonizing the cardiac conduction orchestra. Journal of Physiology, 2018, 596, 549-550.	2.9	3
9	Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrinâ€Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Journal of the American Heart Association, 2018, 7, .	3.7	32
10	Structural and Molecular Bases of Sarcoplasmic Reticulum Ion Channel Function., 2018,, 60-65.		0
11	Clinical and Economic Outcomes of Ranolazine Versus Conventional Antianginals Users Among Veterans With Chronic Stable Angina Pectoris. American Journal of Cardiology, 2018, 122, 1809-1816.	1.6	4
12	Cardiac Arrhythmias as Manifestations of Nanopathies: An Emerging View. Frontiers in Physiology, 2018, 9, 1228.	2.8	10
13	Tetrodotoxin-sensitive Navs contribute to early and delayed afterdepolarizations in long QT arrhythmia models. Journal of General Physiology, 2018, 150, 991-1002.	1.9	25
14	Sub-cellular Electrical Heterogeneity Revealed by Loose Patch Recording Reflects Differential Localization of Sarcolemmal Ion Channels in Intact Rat Hearts. Frontiers in Physiology, 2018, 9, 61.	2.8	5
15	Neuronal sodium channels: emerging components of the nanoâ€machinery of cardiac calcium cycling. Journal of Physiology, 2017, 595, 3823-3834.	2.9	17
16	The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. Journal of General Physiology, 2017, 149, 877-888.	1.9	15
17	Neuronal Na+ Channels Are Integral Components of Pro-Arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-Adrenergic Stimulation. JACC Basic To Translational Science, 2016, 1, 251-266.	4.1	31
18	Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension, 2016, 68, 1171-1178.	2.7	21

#	Article	IF	CITATIONS
19	Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release. Cardiovascular Research, 2015, 106, 143-152.	3.8	38
20	Neuronal Na + Channels as a Novel Cardiac Antiarrhythmic Target. FASEB Journal, 2015, 29, 1025.13.	0.5	0
21	Abstract 18111: Flecainide Exerts its Antiarrhythmic Action in CPVT Through Blockade of Neuronal Na+channel-mediated Arrhythmogenic Diastolic Ca2+ Release. Circulation, 2015, 132, .	1.6	0
22	Abstract 17019: Two Distinct mechanisms by which Na+/Ca2+ dysregulation contributes to Arrhythmogenic Diastolic Ca2+ Release. Circulation, 2014, 130, .	1.6	0
23	Store-dependent deactivation: Cooling the chain-reaction of myocardial calcium signaling. Journal of Molecular and Cellular Cardiology, 2013, 58, 77-83.	1.9	17
24	â€~Ryanopathy': causes and manifestations of RyR2 dysfunction in heart failure. Cardiovascular Research, 2013, 98, 240-247.	3.8	57
25	Inhibition of Na+ channels ameliorates arrhythmias in a drug-induced model of Andersen-Tawil syndrome. Heart Rhythm, 2013, 10, 255-263.	0.7	19
26	NCX is an important determinant for premature ventricular activity in a drug-induced model of Andersen–Tawil syndrome. Cardiovascular Research, 2011, 92, 57-66.	3.8	18
27	Cytosolic calcium accumulation and delayed repolarization associated with ventricular arrhythmias in a guinea pig model of Andersen-Tawil syndrome. Heart Rhythm, 2010, 7, 1428-1435.e1.	0.7	18