
Christian Mosimann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2753539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nature Communications, 2022, 13, 1677.	5.8	17
2	Heterogeneity and genomic loci of ubiquitous transgenic Cre reporter lines in zebrafish. Developmental Dynamics, 2022, 251, 1754-1773.	0.8	5
3	From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. Journal of Cardiovascular Development and Disease, 2021, 8, 17.	0.8	20
4	Persistent Ventricle Partitioning in the Adult Zebrafish Heart. Journal of Cardiovascular Development and Disease, 2021, 8, 41.	0.8	3
5	Definitive hematopoietic stem cells minimally contribute to embryonic hematopoiesis. Cell Reports, 2021, 36, 109703.	2.9	31
6	Definitive Hematopoietic Stem Cells Minimally Contribute to Embryonic Hematopoiesis. Blood, 2021, 138, 3268-3268.	0.6	0
7	The lateral plate mesoderm. Development (Cambridge), 2020, 147, .	1.2	95
8	Anterior trunk muscle shows mix of axial and appendicular developmental patterns. Developmental Dynamics, 2019, 248, 961-968.	0.8	6
9	A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nature Communications, 2019, 10, 3857.	5.8	51
10	Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	12
11	A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates. Nature Communications, 2019, 10, 1189.	5.8	38
12	CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms. Life Science Alliance, 2019, 2, e201800267.	1.3	48
13	Switch and Trace: Recombinase Genetics in Zebrafish. Trends in Genetics, 2018, 34, 362-378.	2.9	65
14	Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nature Communications, 2018, 9, 428.	5.8	62
15	Mutations in <i>Bcl9</i> and <i>Pygo</i> genes cause congenital heart defects by tissue-specific perturbation of Wnt/l²-catenin signaling. Genes and Development, 2018, 32, 1443-1458.	2.7	43
16	Cre/ <i>lox</i> â€controlled spatiotemporal perturbation of FGF signaling in zebrafish. Developmental Dynamics, 2018, 247, 1146-1159.	0.8	21
17	Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nature Communications, 2018, 9, 2001.	5.8	48
18	Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). DMM Disease Models and Mechanisms, 2018, 11, .	1.2	40

CHRISTIAN MOSIMANN

#	Article	IF	CITATIONS
19	Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity. Nature Communications, 2018, 9, 2161.	5.8	32
20	An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development (Cambridge), 2017, 144, 464-478.	1.2	31
21	Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Scientific Reports, 2017, 7, 10061.	1.6	59
22	A defect in the mitochondrial protein Mpv17 underlies the transparent casper zebrafish. Developmental Biology, 2017, 430, 11-17.	0.9	87
23	CRISPR-Cas9 targeted disruption of the yellow ortholog in the housefly identifies the brown body locus. Scientific Reports, 2017, 7, 4582.	1.6	29
24	Clonal fate mapping quantifies the number ofÂhaematopoietic stem cells that arise duringÂdevelopment. Nature Cell Biology, 2017, 19, 17-27.	4.6	90
25	Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. ELife, 2017, 6, .	2.8	54
26	Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling. ELife, 2017, 6, .	2.8	24
27	CrispRVariants charts the mutation spectrum of genome engineering experiments. Nature Biotechnology, 2016, 34, 701-702.	9.4	149
28	Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes Development (Cambridge), 2016, 143, 2025-37.	1.2	244
29	Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods in Cell Biology, 2016, 135, 219-244.	0.5	44
30	A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science, 2016, 351, aad2197.	6.0	339
31	In Vivo Performance and Properties of Tamoxifen Metabolites for CreERT2 Control. PLoS ONE, 2016, 11, e0152989.	1.1	37
32	Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury. Developmental Biology, 2015, 403, 15-21.	0.9	85
33	Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development (Cambridge), 2015, 142, 1050-1061.	1.2	117
34	Generating and evaluating a ranked candidate gene list for potential vertebrate heart field regulators. Genomics Data, 2015, 6, 199-201.	1.3	8
35	Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6, 8146.	5.8	103
36	Novel cardiovascular gene functions revealed via systematic phenotype prediction in zebrafish. Development (Cambridge), 2014, 141, 224-235.	1.2	22

CHRISTIAN MOSIMANN

#	Article	IF	CITATIONS
37	Siteâ€directed zebrafish transgenesis into single landing sites with the phiC31 integrase system. Developmental Dynamics, 2013, 242, 949-963.	0.8	74
38	A Cdx4-Sall4 Regulatory Module Controls the Transition from Mesoderm Formation to Embryonic Hematopoiesis. Stem Cell Reports, 2013, 1, 425-436.	2.3	30
39	Ubiquitous transgene expression and Cre-based recombination driven by the <i>ubiquitin</i> promoter in zebrafish. Development (Cambridge), 2011, 138, 169-177.	1.2	400
40	Advanced Zebrafish Transgenesis with Tol2 and Application for Cre/lox Recombination Experiments. Methods in Cell Biology, 2011, 104, 173-194.	0.5	44
41	Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration. Cell, 2011, 147, 577-589.	13.5	277
42	Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature, 2011, 474, 645-648.	13.7	227
43	Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs During Differentiation and Regeneration,. Blood, 2011, 118, 3387-3387.	0.6	0
44	Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster. PLoS Biology, 2009, 7, e1000236.	2.6	149
45	β-Catenin hits chromatin: regulation of Wnt target gene activation. Nature Reviews Molecular Cell Biology, 2009, 10, 276-286.	16.1	520
46	The role of Parafibromin/Hyrax as a nuclear Gli/Ci-interacting protein in Hedgehog target gene control. Mechanisms of Development, 2009, 126, 394-405.	1.7	48
47	Parafibromin/Hyrax Activates Wnt/Wg Target Gene Transcription by Direct Association with β-catenin/Armadillo. Cell, 2006, 125, 327-341.	13.5	296
48	Early frameshift alleles of zebrafish tbx5a that fail to develop the heartstrings phenotype. Matters, 0, , .	1.0	4