
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2753494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic barcoding systematically compares genes in del(5q) MDS and reveals a central role for <i>CSNK1A1</i> in clonal expansion. Blood Advances, 2022, 6, 1780-1796.	5.2	7
2	SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell, 2022, 29, 217-231.e8.	11.1	146
3	Evolution of severe (transfusionâ€dependent) anaemia in myelodysplastic syndromes with 5q deletion is characterized by a macrophageâ€associated failure of the eythropoietic niche. British Journal of Haematology, 2022, , .	2.5	3
4	Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development (Cambridge), 2022, 149, .	2.5	16
5	Mapping the cardiac vascular niche in heart failure. Nature Communications, 2022, 13, .	12.8	31
6	Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell, 2021, 28, 637-652.e8.	11.1	92
7	Macrophage frequency in the bone marrow correlates with morphologic subtype of myeloproliferative neoplasm. Annals of Hematology, 2021, 100, 97-104.	1.8	7
8	CrossTalkeR: analysis and visualization of ligand–receptorne tworks. Bioinformatics, 2021, 37, 4263-4265.	4.1	28
9	Isolation of human bone marrow stromal cells from bone marrow biopsies for single-cell RNA sequencing. STAR Protocols, 2021, 2, 100538.	1.2	3
10	Still a burning question: the interplay between inflammation and fibrosis in myeloproliferative neoplasms. Current Opinion in Hematology, 2021, 28, 364-371.	2.5	17
11	From cell to cell - identification of actionable targets in bone marrow fibrosis using single cell technologies. Experimental Hematology, 2021, 104, 48-54.	0.4	1
12	Decoding myofibroblast origins in human kidney fibrosis. Nature, 2021, 589, 281-286.	27.8	380
13	SRSF2-P95Hdelays Myelofibrosis Development through Altered JAK/STAT Signaling in JAK2-V617F Megakaryocytes. Blood, 2021, 138, 2544-2544.	1.4	1
14	Type 1 Calreticulin Mutations Differentially Activate the IRE1α-XBP1 Pathway of the Unfolded Protein Response to Drive Myeloproliferative Neoplasms. Blood, 2021, 138, 628-628.	1.4	1
15	Malignant Transformation Involving CXXC4 Mutations Identified in a Leukemic Progression Model of Severe Congenital Neutropenia. Cell Reports Medicine, 2020, 1, 100074.	6.5	11
16	Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood, 2020, 136, 2051-2064.	1.4	56
17	Mesenchymal Stromal Cells as a Cellular Target in Myeloid Malignancy: Chances and Challenges in the Genome Editing of Stromal Alterations. Frontiers in Genome Editing, 2020, 2, 618308.	5.2	2
18	Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematonoiesis Leukemia 2019, 33, 1635-1649	7.2	74

#	Article	IF	CITATIONS
19	Inflammatory bone marrow microenvironment. Hematology American Society of Hematology Education Program, 2019, 2019, 294-302.	2.5	41
20	Fibrosis driving myofibroblast precursors in MPN and new therapeutic pathways. HemaSphere, 2019, 3, 142-145.	2.7	1
21	Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome. Leukemia, 2019, 33, 1759-1772.	7.2	35
22	Transcriptional Landscape of the Microenvironment in Bone Marrow Fibrosis at Single Cell Level. Blood, 2019, 134, 1675-1675.	1.4	2
23	Deconstructing the Clonal Advantage and Clonal Stability of 5q- Candidate Genes in Del(5q) MDS on a Single Cell Level. Blood, 2019, 134, 559-559.	1.4	0
24	Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Science Translational Medicine, 2018, 10, .	12.4	299
25	The identification of fibrosis-driving myofibroblast precursors reveals new therapeutic avenues in myelofibrosis. Blood, 2018, 131, 2111-2119.	1.4	48
26	Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis. Journal of Pathology, 2018, 245, 138-146.	4.5	16
27	Puzzling pieces of chromosome 7 loss or deletion. Blood, 2018, 131, 2871-2872.	1.4	2
28	Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. JCI Insight, 2018, 3, .	5.0	79
29	A Leukemic Progression Model of Severe Congenital Neutropenia Uncovers a Novel Mechanism of AML Development Involving Elevated Inflammatory Responses, Mutation of CXXC4 and Decreased TET2 Levels. Blood, 2018, 132, 540-540.	1.4	1
30	Mutation in DNA Methyltransferase DNMT3A Confers Enhanced Self-Renewal Capacity Onto Multipotent Progenitor Cells and Predisposes to Acute Myeloid Leukemia (AML). Blood, 2018, 132, 2569-2569.	1.4	0
31	Gli1 + Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell, 2017, 20, 785-800.e8.	11.1	195
32	Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell, 2017, 21, 166-177.	11.1	309
33	Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML. Cell, 2016, 165, 303-316.	28.9	200
34	Physiologic Expression of Sf3b1 K700E Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation. Cancer Cell, 2016, 30, 404-417.	16.8	318
35	Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell, 2016, 19, 628-642.	11.1	254
36	An engineered multicomponent bone marrow niche for the recapitulation of hematopoiesis at ectopic transplantation sites. Journal of Hematology and Oncology, 2016, 9, 4.	17.0	35

#	Article	IF	CITATIONS
37	Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Cancer Discovery, 2016, 6, 368-381.	9.4	215
38	Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nature Medicine, 2016, 22, 288-297.	30.7	191
39	Thrombosis in Myeloproliferative Neoplasms Is Linked to Increased Neutrophil Extracellular Trap (NET) Formation. Blood, 2016, 128, 633-633.	1.4	1
40	Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood, 2015, 125, 327-335.	1.4	86
41	Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nature Medicine, 2015, 21, 1473-1480.	30.7	128
42	Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature, 2015, 523, 183-188.	27.8	648
43	Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Research, 2015, 25, 1860-1872.	5.5	614
44	Telomere dynamics in patients with del (5q) MDS before and under treatment with lenalidomide. Leukemia Research, 2015, 39, 1292-1298.	0.8	15
45	Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism. Nature Communications, 2015, 6, 7102.	12.8	71
46	Perivascular Gli1+ Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis. Cell Stem Cell, 2015, 16, 51-66.	11.1	738
47	Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. Journal of Clinical Investigation, 2015, 125, 2935-2951.	8.2	143
48	Physical Interaction Between Mutant Calreticulin and the Thrombopoietin Receptor Is Required for Hematopoietic Transformation. Blood, 2015, 126, LBA-4-LBA-4.	1.4	2
49	A Novel Conditional Knockout of the Diamond Blackfan Anemia Gene Rpl11 Shows Failure of Erythropoiesis, a Marked Increase in BFU-E Progenitors By Phenotype That Proliferate Poorly in Culture, and Activation of p53 Target Genes. Blood, 2015, 126, 1205-1205.	1.4	0
50	Loss of Function of TET2 Cooperates with Constitutively Active KIT in Murine and Human Models of Mastocytosis. PLoS ONE, 2014, 9, e96209.	2.5	31
51	Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. Journal of Experimental Medicine, 2014, 211, 605-612.	8.5	79
52	Activated fibronectin-secretory phenotype of mesenchymal stromal cells in pre-fibrotic myeloproliferative neoplasms. Journal of Hematology and Oncology, 2014, 7, 92.	17.0	29
53	Role of Casein Kinase 1A1 in the Biology and Targeted Therapy of del(5q) MDS. Cancer Cell, 2014, 26, 509-520.	16.8	158
54	Speckle Tracking Echocardiography Detects Uremic Cardiomyopathy Early and Predicts Cardiovascular Mortality in ESRD. Journal of the American Society of Nephrology: JASN, 2014, 25, 2351-2365.	6.1	91

#	Article	IF	CITATIONS
55	Lenalidomide Induces Ubiquitination and Degradation of CSNK1A1 in MDS with Del(5q). Blood, 2014, 124, 4-4.	1.4	19
56	Loss of TET2 Function in Myelodysplastic Syndrome Results in Intragenic Hypermethylation and Alterations in mRNA Splicing. Blood, 2014, 124, 775-775.	1.4	2
57	Mutant Splicing Factor 3b Subunit 1 (SF3B1) Causes Dysregulated Erythropoiesis and a Stem Cell Disadvantage. Blood, 2014, 124, 828-828.	1.4	3
58	Reduced Protein Synthesis and p53 Activation in Late-Stage Erythroblasts Mediate the Erythroid Differentiation Defect in Mice with Ribosomal Protein S14 Haploinsufficiency. Blood, 2014, 124, 1892-1892.	1.4	0
59	(<i>R</i>)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible. Science, 2013, 339, 1621-1625.	12.6	624
60	Reconsidering pluripotency tests: Do we still need teratoma assays?. Stem Cell Research, 2013, 11, 552-562.	0.7	76
61	Novel insights into osteogenesis and matrix remodelling associated with calcific uraemic arteriolopathy. Nephrology Dialysis Transplantation, 2013, 28, 856-868.	0.7	83
62	Osteogenesis of Heterotopically Transplanted Mesenchymal Stromal Cells in Rat Models of Chronic Kidney Disease. Journal of Bone and Mineral Research, 2013, 28, 2523-2534.	2.8	26
63	Parathyroid hormone–related protein and regulation of cell survival in the kidney. Kidney International, 2013, 83, 777-779.	5.2	6
64	Sustained Alterations In Bone Marrow Stromal Cells From Patients With Myeloproliferative Neoplasms (MPN) Contribute To Remodelling Of The Bone Marrow Microenvironment Prior To The Manifestation Of Myelofibrosis. Blood, 2013, 122, 4102-4102.	1.4	1
65	Critical Role Of Casein Kinase (Ck)1α Heterozygote Gene Inactivation In The Clonal Advantage Of Hematopoietic Stem Cells In Del(5q) MDS. Blood, 2013, 122, 98-98.	1.4	0
66	Tet2 Loss Accelerates The Myeloproliferative Neoplasm (MPN) Phenotype Of Jak2V617F Knockin Mice But Is Insufficient To Cause Leukemic Transformation. Blood, 2013, 122, 4095-4095.	1.4	0
67	Sclerostin as a potential novel biomarker for aortic valve calcification: an in-vivo and ex-vivo study. Journal of Heart Valve Disease, 2013, 22, 317-25.	0.5	66
68	Uraemia disrupts the vascular niche in a 3D co-culture system of human mesenchymal stem cells and endothelial cells. Nephrology Dialysis Transplantation, 2012, 27, 2693-2702.	0.7	11
69	Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials, 2012, 33, 6987-6997.	11.4	155
70	Epithelial morphogenesis of germline-derived pluripotent stem cells on organotypic skin equivalents in vitro. Differentiation, 2012, 83, 138-147.	1.9	12
71	3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials, 2012, 33, 1736-1747.	11.4	158
72	Comparative Analysis of Hematopoiesis Supporting Capacity and Matrix Remodeling of Bone Marrow Stromal Cells Isolated From Patients with Myeloproliferative Neoplasms Blood, 2012, 120, 2864-2864.	1.4	2

REBEKKA K SCHNEIDER

#	Article	IF	CITATIONS
73	Casein Kinase 1 Alpha Maintains Normal and Leukemic Stem Cells by Regulating p53 Activity. Blood, 2012, 120, 209-209.	1.4	0
74	Exposure to Uremic Serum Induces a Procalcific Phenotype in Human Mesenchymal Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e45-54.	2.4	44
75	Brief Report: Evaluating the Potential of Putative Pluripotent Cells Derived from Human Testis. Stem Cells, 2011, 29, 1304-1309.	3.2	25
76	MSCs From Patients with Myelofibrosis Display a Fibrotic Phenotype. Blood, 2011, 118, 5160-5160.	1.4	1
77	The role of biomaterials in the direction of mesenchymal stem cell properties and extracellular matrix remodelling in dermal tissue engineering. Biomaterials, 2010, 31, 7948-7959.	11.4	64
78	The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials, 2010, 31, 467-480.	11.4	203
79	Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation, 2010, 79, 182-193.	1.9	51
80	Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Research in Cardiology, 2009, 104, 403-411.	5.9	26