
Jinbiao Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2753347/publications.pdf Version: 2024-02-01

ΙινβιλοΙιλ

#	Article	IF	CITATIONS
1	Postpassivation of Cs _{0.05} (FA _{0.83} MA _{0.17}) _{0.95} Pb(I _{0.83} Br _{0 Perovskite Films with Tris(pentafluorophenyl)borane. ACS Applied Materials & amp; Interfaces, 2021, 13, 2472-2482.}	0.17) 8.0	ا <syyb>3</syyb>
2	Enhanced photocurrent of perovskite solar cells by dual-sensitized β-NaYF4:Nd3+/Yb3+/Er3+ up-conversion nanoparticles. Chemical Physics Letters, 2021, 763, 138253.	2.6	23
3	Plasmonic Au Nanooctahedrons Enhance Light Harvesting and Photocarrier Extraction in Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 3201-3209.	5.1	25
4	Zwitterion-Stabilizing Scalable Bladed α-Phase Cs _{0.1} FA _{0.9} PbI ₃ Films for Efficient Inverted Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 7020-7030.	6.7	27
5	Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF ₄ :Eu ³⁺ nanophosphors. Journal of Materials Chemistry C, 2019, 7, 937-942.	5.5	40
6	High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles. Journal of Power Sources, 2019, 426, 178-187.	7.8	65
7	Spin-coated cobalt telluride counter electrodes for highly efficient dye-sensitized solar cells. Materials Research Bulletin, 2019, 115, 65-69.	5.2	10
8	Hollow rod-like hybrid Co2CrO4/Co1â^'xS for high-performance asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 1045-1055.	2.2	4
9	High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO ₂ Mesoporous Scaffold. Research, 2019, 2019, 4049793.	5.7	35
10	Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chemical Communications, 2018, 54, 3170-3173.	4.1	41
11	Hydrothermal Synthesis of Hybrid Rod‣ike Hollow CoWO ₄ /Co _{1â^'<i>x</i>} S for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 1047-1055.	3.4	30
12	Annealingâ€Free Cr ₂ O ₃ Electronâ€Selective Layer for Efficient Hybrid Perovskite Solar Cells. ChemSusChem, 2018, 11, 619-628.	6.8	22
13	Improving the Performance of a Perovskite Solar Cell by Adjusting the Dispersant for Titanium Dioxide. Energy Technology, 2018, 6, 677-682.	3.8	2
14	A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells. Applied Surface Science, 2017, 401, 1-6.	6.1	31
15	Nickel selenide/reduced graphene oxide nanocomposite as counter electrode for high efficient dye-sensitized solar cells. Journal of Colloid and Interface Science, 2017, 498, 217-222.	9.4	41
16	Influence of deposition voltage of cobalt diselenide preparation on the film quality and the performance of dye-sensitized solar cells. Solar Energy, 2017, 151, 61-67.	6.1	25
17	Modulated CH3NH3PbI3â^'xBrx film for efficient perovskite solar cells exceeding 18%. Scientific Reports, 2017, 7, 44603.	3.3	60
18	High-Performance Molybdenum Diselenide Electrodes Used in Dye-Sensitized Solar Cells and Supercapacitors. IEEE Journal of Photovoltaics, 2016, 6, 1196-1202.	2.5	24

Jinbiao Jia

#	Article	IF	CITATIONS
19	Cobalt selenite dihydrate as an effective and stable Pt-free counter electrode in dye-sensitized solar cells. Journal of Power Sources, 2016, 336, 83-90.	7.8	27
20	An in situ polymerized PEDOT/Fe ₃ O ₄ composite as a Pt-free counter electrode for highly efficient dye sensitized solar cells. RSC Advances, 2016, 6, 1637-1643.	3.6	28
21	Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells. Journal of Alloys and Compounds, 2015, 640, 29-33.	5.5	45
22	Cobalt/molybdenum ternary hybrid with hierarchical architecture used as high efficient counter electrode for dye-sensitized solar cells. Solar Energy, 2015, 122, 326-333.	6.1	16
23	Cobalt selenide/tin selenide hybrid used as a high efficient counter electrode for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 10102-10108.	2.2	21
24	Cobalt telluride/reduced graphene oxide using as high performance counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2015, 185, 184-189.	5.2	38