Xiaowei Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2753013/publications.pdf

Version: 2024-02-01

361296 276775 1,674 43 20 41 citations h-index g-index papers 60 60 60 1500 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Enantioselective Regiodivergent Allylic Alkylations of MBH Carbonates with Phthalides. Journal of the American Chemical Society, 2012, 134, 10222-10227.	6.6	185
2	Highly Enantioselective Synthesis of 3,4-Dihydropyrans through a Phosphine-Catalyzed [4+2] Annulation of Allenones and \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}^2 -Keto Esters. Journal of the American Chemical Society, 2015, 137, 54-57.	6.6	172
3	Chiral Phosphine Catalyzed Asymmetric Michael Addition of Oxindoles. Angewandte Chemie - International Edition, 2013, 52, 943-947.	7.2	152
4	Diastereodivergent Synthesis of 3â€Spirocyclopropylâ€2â€oxindoles through Direct Enantioselective Cyclopropanation of Oxindoles. Chemistry - A European Journal, 2012, 18, 8315-8319.	1.7	123
5	Enantioselective Construction of 3-Hydroxy Oxindoles via Decarboxylative Addition of \hat{l}^2 -Ketoacids to Isatins. Organic Letters, 2012, 14, 4018-4021.	2.4	98
6	Enantioselective desymmetrization of cyclohexadienones via an intramolecular Rauhut–Currier reaction of allenoates. Nature Communications, 2016, 7, 13024.	5.8	90
7	Asymmetric Conjugate Alkynylation of Cyclic α,βâ€Unsaturated Carbonyl Compounds with a Chiral Diene Rhodium Catalyst. Angewandte Chemie - International Edition, 2016, 55, 1133-1137.	7.2	65
8	Enantioselective conjugate addition of 3-fluoro-oxindoles to vinyl sulfone: an organocatalytic access to chiral 3-fluoro-3-substituted oxindoles. Organic and Biomolecular Chemistry, 2013, 11, 5217.	1.5	56
9	From the Feist–Bénary Reaction to Organocatalytic Domino Michael–Alkylation Reactions: Asymmetric Synthesis of 3(2 <i>H</i>)â€Furanones. Chemistry - A European Journal, 2012, 18, 85-89.	1.7	54
10	Asymmetric synthesis of 3-spirocyclopropyl-2-oxindoles via intramolecular trapping of chiral aza-ortho-xylylene. Chemical Communications, 2013, 49, 9224.	2.2	54
11	Organocatalytic Asymmetric Aldol Reaction of Hydroxyacetone with \hat{l}^2,\hat{l}^3 -Unsaturated \hat{l}_\pm -Keto Esters: Facile Access to Chiral Tertiary Alcohols. Organic Letters, 2011, 13, 5248-5251.	2.4	51
12	Baseâ€Free Conditions for Rhodiumâ€Catalyzed Asymmetric Arylation To Produce Stereochemically Labile αâ€Aryl Ketones. Angewandte Chemie - International Edition, 2016, 55, 6739-6743.	7.2	43
13	Enantioselective Synthesis of 3,3′â€Diarylâ€SPINOLs: Rhodiumâ€Catalyzed Asymmetric Arylation/BF ₃ â€Promoted Spirocyclization Sequence. Angewandte Chemie - International Edition, 2019, 58, 2474-2478.	7.2	39
14	A Highly Enantioselective Synthesis of Functionalized 2,3â€Dihydrofurans by a Modified Feist–Bénary Reaction. Chemistry - A European Journal, 2012, 18, 13945-13948.	1.7	35
15	Rhodium-Catalyzed Asymmetric Conjugate Alkynylation of \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l} ±-Ketoesters. Organic Letters, 2017, 19, 2378-2381.	2.4	34
16	A Facile Approach for the Asymmetric Synthesis of Oxindoles with a 3-Sulfenyl-Substituted Quaternary Stereocenter. Organic Letters, 2013, 15, 4920-4923.	2.4	32
17	Rhodium-Catalyzed Expeditious Synthesis of Indenes from Propargyl Alcohols and Organoboronic Acids by Selective 1,4-Rhodium Migration over \hat{l}^2 -Oxygen Elimination. ACS Catalysis, 2019, 9, 6857-6863.	5 . 5	31
18	Structures and physical properties of oligomeric and polymeric metal complexes based on bis(pyridyl)-substituted TTF ligands and an inorganic analogue. Dalton Transactions, 2011, 40, 919-926.	1.6	30

#	Article	IF	Citations
19	Rhodium(I)â€Catalyzed Arylation/Dehydroxylation of <i>tert</i> â€Propargylic Alcohols Leading to Tetrasubstituted Allenes. Advanced Synthesis and Catalysis, 2018, 360, 642-646.	2.1	23
20	Synthesis of Planar Chiral Shvo Catalysts for Asymmetric Transfer Hydrogenation. Advanced Synthesis and Catalysis, 2016, 358, 1054-1058.	2.1	20
21	Enantioselective N-alkylation of isatins and synthesis of chiral N-alkylated indoles. Chemical Communications, 2014, 50, 11354-11357.	2.2	19
22	Catalyst-Controlled Chemodivergent Synthesis of Spirochromans from Diarylideneacetones and Organoboronic Acids. ACS Catalysis, 2020, 10, 2596-2602.	5.5	18
23	Catalytic Asymmetric Conjugate Arylation of \hat{l}^3 , \hat{l} -Unsaturated \hat{l}^2 -Dicarbonyl Compounds. Organic Letters, 2018, 20, 6882-6885.	2.4	16
24	Facile regiospecific synthesis of 2,3-disubstituted indoles from isatins. Chemical Communications, 2014, 50, 9469-9472.	2.2	15
25	Asymmetric Conjugate Alkynylation of Cyclic α,βâ€Unsaturated Carbonyl Compounds with a Chiral Diene Rhodium Catalyst. Angewandte Chemie, 2016, 128, 1145-1149.	1.6	15
26	Catalytic asymmetric synthesis of chiral phenols in ethanol with recyclable rhodium catalyst. Green Chemistry, 2019, 21, 4946-4950.	4.6	15
27	Rhodiumâ€Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Carbonylâ€Activated Alkenyl Azaarenes. Advanced Synthesis and Catalysis, 2020, 362, 3142-3147.	2.1	15
28	Rhodium-Catalyzed Diverse Arylation of 2,5-Dihydrofuran: Controllable Divergent Synthesis via Four Pathways. ACS Catalysis, 2020, 10, 2958-2963.	5.5	14
29	Rhodium-Catalyzed Homocoupling of γ-Alkylated <i>tert</i> -Propargylic Alcohols. Organic Letters, 2018, 20, 272-275.	2.4	11
30	Mild and Selective Rhodium-Catalyzed Transfer Hydrogenation of Functionalized Arenes. Organic Letters, 2021, 23, 1910-1914.	2.4	11
31	Baseâ€Free Conditions for Rhodiumâ€Catalyzed Asymmetric Arylation To Produce Stereochemically Labile αâ€Aryl Ketones. Angewandte Chemie, 2016, 128, 6851-6855.	1.6	10
32	Rhodium atalyzed Arylative Transformations of Propargylic Diols: Dual Role of the Rhodium Catalyst. Advanced Synthesis and Catalysis, 2018, 360, 1595-1599.	2.1	10
33	Synthesis of <i>meta</i> àêArylated Phenol Derivatives by Rhodium(I)â€Catalyzed Arylation of Quinone Monoacetal. Advanced Synthesis and Catalysis, 2018, 360, 3466-3470.	2.1	9
34	Diboronâ€Mediated Rhodium atalysed Transfer Hydrogenation of Alkenes and Carbonyls. European Journal of Organic Chemistry, 2020, 2020, 1046-1049.	1.2	9
35	A rhodium-catalysed conjugate addition/cyclization cascade for the asymmetric synthesis of 2-amino-4 <i>H</i> -chromenes. Organic and Biomolecular Chemistry, 2021, 19, 785-788.	1.5	9
36	Access to Chiral HWE Reagents by Rhodium-Catalyzed Asymmetric Arylation of \hat{l}^3 , \hat{l}' -Unsaturated \hat{l}^2 -Ketophosphonates. Journal of Organic Chemistry, 2018, 83, 5869-5875.	1.7	8

#	Article	IF	CITATION
37	Enantioselective Synthesis of 3,3′â€Diarylâ€SPINOLs: Rhodiumâ€Catalyzed Asymmetric Arylation/BF ₃ â€Promoted Spirocyclization Sequence. Angewandte Chemie, 2019, 131, 2496-2500.	1.6	7
38	Rhodium-Catalyzed Chemodivergent Pyridylation of Alkynes with Pyridylboronic Acids. Organic Letters, 2022, 24, 4896-4901.	2.4	7
39	Rhodiumâ€Catalysed Asymmetric Synthesis of 4â€Alkylâ€4 H â€Chromenes. Advanced Synthesis and Catalysis, 2020, 362, 3589-3593.	2.1	5
40	Rhodium-Catalyzed Asymmetric Conjugate Pyridylation with Pyridylboronic Acids. ACS Catalysis, 2022, 12, 2434-2440.	5.5	5
41	Relay Rhodium(I)/Acid Catalysis for Rapid Access to Benzoâ€2 <i>H</i> â€Pyrans and Benzofurans. Advanced Synthesis and Catalysis, 2022, 364, 1162-1167.	2.1	5
42	Rhodium atalysed Asymmetric Arylation of Pyridylimines. Advanced Synthesis and Catalysis, 2022, 364, 531-535.	2.1	4
43	Front Cover Picture: Rhodium atalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Carbonylâ€Activated Alkenyl Azaarenes (Adv. Synth. Catal. 15/2020). Advanced Synthesis and Catalysis, 2020, 362, 3021-3021.	2.1	0