
Lin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2753001/publications.pdf Version: 2024-02-01

1 м 7нн

#	Article	IF	CITATIONS
1	Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chemistry of Materials, 2017, 29, 399-461.	6.7	233
2	Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 22-36.	13.7	124
3	Synthesis of Fluorescent Silver Nanoclusters: Introducing Bottom-Up and Top-Down Approaches to Nanochemistry in a Single Laboratory Class. Journal of Chemical Education, 2020, 97, 239-243.	2.3	24
4	Investigating Possible Enzymatic Degradation on Polymer Shells around Inorganic Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 935.	4.1	17
5	Surface Engineering of Gold Nanoclusters Protected with 11-Mercaptoundecanoic Acid for Photoluminescence Sensing. ACS Applied Nano Materials, 2021, 4, 3197-3203.	5.0	12
6	An alternative magnesium-based root canal disinfectant: Preliminary study of its efficacy against Enterococcus faecalis and Candida albicans in vitro. Progress in Natural Science: Materials International, 2014, 24, 441-445.	4.4	6