Heejun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2752729/publications.pdf

Version: 2024-02-01

		567281	526287
28	792	15	27
papers	citations	h-index	g-index
28	28	28	1096
20	20	20	1086
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Bandgap modulation in the two-dimensional core-shell-structured monolayers of WS2. IScience, 2022, 25, 103563.	4.1	4
2	Heterophase Boundary for Active Hydrogen Evolution in MoTe ₂ . Advanced Functional Materials, 2022, 32, 2105675.	14.9	21
3	Atomic and Electronic Manipulation of Robust Ferroelectric Polymorphs. Advanced Materials, 2022, 34, .	21.0	4
4	Efficient hydrogen evolution reaction at the phase transition boundary of polymorphic Mo _{1â^2x} W _x Te ₂ . APL Materials, 2022, 10, 061107.	5.1	0
5	Classical and quantum phases in hexagonal boron nitrideâ€combined van der Waals heterostructures. InformaÄnÃ-Materiály, 2021, 3, 252-270.	17.3	5
6	Lifshitz Transition and Nonâ€Fermi Liquid Behavior in Highly Doped Semimetals. Advanced Materials, 2021, 33, 2005742.	21.0	5
7	Mitrofanovite, Layered Platinum Telluride, for Active Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 2437-2446.	8.0	10
8	Harnessing Thermoelectric Puddles <i>via</i> the Stacking Order and Electronic Screening in Graphene. ACS Nano, 2021, 15, 5397-5404.	14.6	3
9	Thermomechanical Manipulation of Electric Transport in MoTe 2. Advanced Electronic Materials, 2021, 7, 2000823.	5.1	5
10	Near-field probing of dielectric screening by hexagonal boron nitride in graphene integrated on silicon photonics. Nanotechnology, 2021, 32, 315207.	2.6	3
11	In-sensor reservoir computing for language learning via two-dimensional memristors. Science Advances, 2021, 7, .	10.3	175
12	Active hydrogen evolution on the plasma-treated edges of WTe2. APL Materials, 2021, 9, .	5.1	19
13	Largeâ€Area MoS 2 via Colloidal Nanosheet Ink for Integrated Memtransistor. Small Methods, 2021, 5, 2100558.	8.6	8
14	Sizable Suppression of Thermal Hall Effect upon Isotopic Substitution in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/Math/Mt"><mml:msub><mml:mrow><mml:mi>SrTiO</mml:mi></mml:mrow><mml:mrow><mml:mn>3<td>nml:mn><</td><td>/mml:mrow></td></mml:mn></mml:mrow></mml:msub></mml:math>	nml:mn><	/mml:mrow>
15	Robust Quantum Oscillation of Dirac Fermions in a Single-Defect Resonant Transistor. ACS Nano, 2021, 15, 20013-20019.	14.6	6
16	Role of anionic vacancy for active hydrogen evolution in WTe2. Applied Surface Science, 2020, 515, 145972.	6.1	34
17	Symmetry Dictated Grain Boundary State in a Two-Dimensional Topological Insulator. Nano Letters, 2020, 20, 5837-5843.	9.1	16
18	Recent Progress in Synaptic Devices Based on 2D Materials. Advanced Intelligent Systems, 2020, 2, 1900167.	6.1	55

#	ARTICLE	IF	CITATION
19	Resonant Tunneling Spectroscopy to Probe the Giant Stark Effect in Atomically Thin Materials. Advanced Materials, 2020, 32, e1906942.	21.0	18
20	Hybrid catalyst with monoclinic MoTe2 and platinum for efficient hydrogen evolution. APL Materials, 2019, 7, .	5.1	24
21	Vertical Heterophase for Electrical, Electrochemical, and Mechanical Manipulations of Layered MoTe ₂ . Advanced Functional Materials, 2019, 29, 1904504.	14.9	40
22	Proximity Engineering of the van der Waals Interaction in Multilayered Graphene. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42528-42533.	8.0	9
23	In Operando Stacking of Reduced Graphene Oxide for Active Hydrogen Evolution. ACS Applied Materials & Company (1997) (199	8.0	17
24	Coherent Thermoelectric Power from Graphene Quantum Dots. Nano Letters, 2019, 19, 61-68.	9.1	25
25	Selective growth of monolayer semiconductors for diverse synaptic junctions. 2D Materials, 2019, 6, 015029.	4.4	25
26	Synaptic Computation Enabled by Joule Heating of Single-Layered Semiconductors for Sound Localization. Nano Letters, 2018, 18, 3229-3234.	9.1	134
27	Tunable Out-of-Plane Piezoelectricity in Thin-Layered MoTe ₂ by Surface Corrugation-Mediated Flexoelectricity. ACS Applied Materials & Diterfaces, 2018, 10, 27424-27431.	8.0	44
28	Long-Range Lattice Engineering of MoTe ₂ by a 2D Electride. Nano Letters, 2017, 17, 3363-3368.	9.1	72